【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DGAE,垂足為G,若DG=1,則AE的邊長為( ).

A.2 B.4 C.4 D.8

【答案】B.

【解析】

試題分析:由AE為角平分線,得到一對角相等,再由ABCD為平行四邊形,得到AD與BE平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,等量代換及等角對等邊得到AD=DF,由F為DC中點,AB=CD,求出AD與DF的長,得出三角形ADF為等腰三角形,根據(jù)三線合一得到G為AF中點,在直角三角形ADG中,由AD與DG的長,利用勾股定理求出AG的長,進而求出AF的長,再由三角形ADF與三角形ECF全等,得出AF=EF,即可求出AE的長.AE為DAB的平分線,∴∠DAE=BAE,DCAB,∴∠BAE=DFA,∴∠DAE=DFA,AD=FD,又F為DC的中點,DF=CF,AD=DF=DC=AB=2,在RtADG中,根據(jù)勾股定理得:AG=,則AF=2AG=2,平行四邊形ABCD,ADBC,∴∠DAF=E,ADF=ECF,在ADF和ECF中,,∴△ADF≌△ECF(AAS),AF=EF,則AE=2AF=4.故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】從分別標有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒有明顯差別的卡片中,隨機抽取一張,所抽卡片上的數(shù)的絕對值不是正數(shù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】彈簧掛上物體后會伸長,測得一彈簧的長度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系那么彈簧總長y(cm)與所掛重物x(kg)之間的關(guān)系式為( )

A. yx+12 B. y=0.5x+12

C. y=0.5x+10 D. yx+10.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是明明設(shè)計的智力拼圖玩具的一部分,現(xiàn)在明明遇到了兩個問題,請你幫助解決:

問題1D32°ACD60°,為保證ABDE,則∠A等于多少度?

問題2G,GFH,H之間有什么樣的關(guān)系時,GPHQ?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.

小明提供了如下解答過程:

證明:連接BD.

∵∠1+∠3=180∠A,∠2+∠4=180―∠C,∠A=∠C,

∴ ∠1+∠3=∠2+∠4.

∵∠ABC=∠ADC,

∴∠1=∠4,∠2=∠3.

∴AB∥CD,AD∥BC.

∴四邊形ABCD是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形.

反思交流(1)請問小明的解法正確嗎?如果有錯,說明錯在何處,并給出正確的證明過程.

(2)用語言敘述上述命題:___________________________________________________.

運用探究(3)下列條件中,能確定四邊形ABCD是平行四邊形的是_____

A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3

C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Aa,a+5)在x軸上,則點A到原點的距離為( 。

A.5B.0C.5D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N.

(1)觀察圖1,直接寫出∠AEM與∠BNE的關(guān)系是;(不用證明)
(2)如圖1,當M、N都分別在AB、BC上時,可探究出BN與AM的關(guān)系為:;(不用證明)
(3)如圖2,當M、N都分別在AB、BC的延長線上時,(2)中BN與AM的關(guān)系式是否仍然成立?若成立,請說明理由:若不成立,寫出你認為成立的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, ,點是直線上一點(不與重合),以為一邊在右側(cè),使,連接

(1)如圖1,當點在線段上,如果,則 度;

(2)設(shè),

①如圖2,當點在線段上移動,則之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當點在直線上移動,則之間有怎樣的數(shù)量關(guān)系?請畫出圖形并直接寫出相應的結(jié)論.

查看答案和解析>>

同步練習冊答案