【題目】在括號(hào)內(nèi)填寫(xiě)理由.
已知:如圖,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求證:CD⊥AB
證明:∵DG⊥BC,AC⊥BC
∴∠DGB=∠ACB=90° ( )
∴DG∥AC( )
∴∠2=∠DCA ( )
∵∠1=∠2∴∠1=∠DCA
∴EF∥CD( )
∴∠AEF=∠ADC( )
∵EF⊥AB
∴∠AEF=90°
∴∠ADC=90° 即CD⊥AB.
【答案】垂直的定義;同位角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同位角相等.
【解析】
根據(jù)平行線的性質(zhì)與判定定理即可作出解決.
證明:∵DG⊥BC,AC⊥BC
∴∠DGB=∠ACB=90° ( 垂直的定義。
∴DG∥AC( 同位角相等,兩直線平行。
∴∠2=∠DCA ( 兩直線平行,同位角相等 )
∵∠1=∠2∴∠1=∠DCA 等量代換
∴EF∥CD( 同位角相等,兩直線平行 )
∴∠AEF=∠ADC( 兩直線平行,同位角相等。
∵EF⊥AB
∴∠AEF=90°
∴∠ADC=90° 即CD⊥AB.
故答案為:垂直的定義;同位角相等,兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同位角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暴雨過(guò)后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問(wèn)兩隊(duì)的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線EF分別與直線AB,CD相交于點(diǎn)F,E,EM平分∠FED,AB∥CD,H,P分別為直線AB和線段EF上的點(diǎn)。
(1)如圖1,HM平分∠BHP,若HP⊥EF,求∠M的度數(shù)。
(2)如圖2,EN平分∠HEF交AB于點(diǎn)N,NQ⊥EM于點(diǎn)Q,當(dāng)H在直線AB上運(yùn)動(dòng)(不與點(diǎn)F重合)時(shí),探究∠FHE與∠ENQ的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC三頂點(diǎn)A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'與△ABC關(guān)于y軸對(duì)稱(chēng).
(1)直接寫(xiě)出A'、B'、C'的坐標(biāo);
(2)畫(huà)出△A'B'C';
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)為60cm,寬為x(cm)的大長(zhǎng)方形被分割為7小塊,除陰影 A, B外,其余5塊是形狀、大小完全相同的小長(zhǎng)方形,其較短一邊長(zhǎng)為 y (cm).
(1)填空:從圖可知,每個(gè)小長(zhǎng)方形較長(zhǎng)的一邊長(zhǎng)是_________cm (用含y的代數(shù)式表示).
(2)分別求出陰影 A,B的面積,并計(jì)算陰影 A,B的面積差?(用含x,y的式子表示)
(3)當(dāng)y=10時(shí),陰影 A與陰影 B的面積差會(huì)隨著x的變化而變化嗎?請(qǐng)你作出判斷,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D,E分別在AC,BC上,且CD·BC=AC·CE,以E為圓心,DE長(zhǎng)為半徑作圓,⊙E經(jīng)過(guò)點(diǎn)B,與AB,BC分別交于點(diǎn)F,G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,
①求⊙E的半徑;
②若Rt△ABC的內(nèi)切圓圓心為I,則IE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的二次方程ax2+bx+c=0沒(méi)有實(shí)數(shù)根,一位老師改動(dòng)了方程的二次項(xiàng)系數(shù)后,得到的新方程有兩個(gè)根為12和4;另一位老師改動(dòng)原來(lái)方程的某一個(gè)系數(shù)的符號(hào),所得到的新方程的兩個(gè)根為-2和6,那么=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com