【題目】如圖所示,在梯形ABCD中,AD∥BC,ABAD,∠BAD的平分線AEBC于點E,連接DE

1)求證:四邊形ABED是菱形;

2)若∠ABC60°CE2BE,試判斷△CDE的形狀,并說明理由.

【答案】見解析

【解析】

試題(1)先證得四邊形ABED是平行四邊形,又AB=AD, 鄰邊相等的平行四邊形是菱形;

2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.

試題解析:梯形ABCD中,AD∥BC,

四邊形ABED是平行四邊形,

AB=AD,

四邊形ABED是菱形;

2四邊形ABED是菱形,∠ABC=60°,

∴∠DEC=60°,AB=ED

EC=2BE,

∴EC=2DE

∴△DEC是直角三角形,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=6cmBC=8cm,點D從點C出發(fā),以2 cm/s 的速度沿折線CAB向點B運動,同時點E從點B出發(fā),以1 cm/s的速度沿BC邊向點C運動,設(shè)點E運動的時間為t (單位:s)(0<t<8).

(1) BDE 是直角三角形時,求t的值;

(2)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,①設(shè)它的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;②是否存在某個時刻t,使平行四邊形CDEF為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B、C在數(shù)軸上對應(yīng)的數(shù)分別為13、5P在數(shù)軸上對應(yīng)的數(shù)是﹣2,P關(guān)于點A的對稱點為P1,P1關(guān)于點B的對稱點為P2,P2關(guān)于點C的對稱點為P3P3關(guān)于點A的對稱點為P4,P1P2016的長度為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC10,BC邊上的高為3.將點A繞點B逆時針旋轉(zhuǎn)90°得到點E,繞點C順時針旋轉(zhuǎn)90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,求五邊形BFCDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點,且PA=3,PB=4,PC=5,將△ABP繞點B順時針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BCDEAB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.

1)在圖1中,依題意補全圖形;

2)記),求的大。唬ㄓ煤的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點邊上,點邊上,滿足,若,則的面積為( .

A.B.C.D.

查看答案和解析>>

同步練習冊答案