(2013•成都一模)若等腰梯形ABCD的上、下底之和為4,并且兩條對(duì)角線所夾銳角為60°,則該等腰梯形的面積為
4
3
4
3
3
4
3
4
3
3
(結(jié)果保留根號(hào)的形式).
分析:根據(jù)題意作圖,題中指出兩條對(duì)角線所夾銳角為60°而沒有指明是哪個(gè)角,所以做題時(shí)要分兩種情況進(jìn)行分析,從而得到最后答案.
解答:解:已知梯形的上下底的和是4,設(shè)AB+CD=4,
對(duì)角線AC與BD交于點(diǎn)O,經(jīng)過點(diǎn)C作對(duì)角線BD的平行線CE交AB的延長線于點(diǎn)E.
①當(dāng)∠DOC=60度時(shí),∠ACE=60°,△ACE是等邊三角形,邊長AC=CE=AE=4,
作CF⊥AE,CF=4×sin60°=4×
3
2
=2
3

因而面積是
1
2
×4×2
3
=4
3

②當(dāng)∠BOC=60度時(shí),∠AOB=180°-60°=120°,
又∵BD∥CE,
∴∠ACE=∠AOB=120°,
∴△ACE是等腰三角形,且底邊AE=4,
因而∠CEA=
180°-120°
2
=30°,作CF⊥AE,則AF=FE=2,CF=2×tan30°=
2
3
3
,
則△ACE的面積=
1
2
×4×
2
3
3
=
4
3
3
,而△ACE的面積等于梯形ABCD的面積.
因而等腰梯形的面積為4
3
4
3
3

故答案為:4
3
4
3
3
點(diǎn)評(píng):此題考查等腰梯形的性質(zhì)及梯形中常見的輔助線的作法,通過這條輔助線可以把兩對(duì)角線的夾角的問題轉(zhuǎn)化為三角形的角的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)如圖,AB是⊙O的直徑,點(diǎn)D、T是圓上的兩點(diǎn),且AT平分∠BAD,過點(diǎn)T作AD延長線的垂線PQ,垂足為C.若⊙O的半徑為2,TC=
3
,則圖中陰影部分的面積是
9
3
-4π
6
9
3
-4π
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)為了實(shí)施教育均衡化,成都市決定采用市、區(qū)兩級(jí)財(cái)政部門補(bǔ)貼相結(jié)合的方式為各級(jí)中小學(xué)添置多媒體教學(xué)設(shè)備,針對(duì)各個(gè)學(xué)校添置多媒體所需費(fèi)用的多少市財(cái)政部門實(shí)施分類補(bǔ)貼措施如下表,其余費(fèi)用由區(qū)財(cái)政部門補(bǔ)貼.
添置多媒體所需費(fèi)用(萬元) 補(bǔ)貼百分比
不大于10萬元部分 80%
大于10萬元不大于m萬元部分 50%
大于m萬元部分 20%
其中學(xué)校所在的區(qū)不同,m的取值也不相同,但市財(cái)政部門將m調(diào)控在20至40之間(20≤m≤40).試解決下列問題:
(1)若某學(xué)校的多媒體教學(xué)設(shè)備費(fèi)用為18萬元,求市、區(qū)兩級(jí)財(cái)政部門應(yīng)各自補(bǔ)貼多少;
(2)若某學(xué)校的多媒體教學(xué)設(shè)備費(fèi)用為x萬元,市財(cái)政部門補(bǔ)貼y萬元,試分類列出y關(guān)于x的函數(shù)式;
(3)若某學(xué)校的多媒體教學(xué)設(shè)備費(fèi)用為30萬元,市財(cái)政部門補(bǔ)貼y萬元的取值范圍為12≤y≤24,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)二次函數(shù)y=ax2+bx+c的值恒為正,則a,b,c應(yīng)滿足( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)已知P1(-2,y1),P2(-1,y2),P3(2,y3)是反比例函數(shù)y=
2
x
的圖象上的三點(diǎn),則y1,y2,y3的大小關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)如圖,以AB為直徑的⊙O是△ADC的外接圓,過點(diǎn)O作PO⊥AB,交AC于點(diǎn)E,PC的延長線交AB的延長線于點(diǎn)F,∠PEC=∠PCE.若△ADC是邊長為1的等邊三角形,則PC的長=
1
3
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案