問題背景:

如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,點D是射線CB上任意一點,△ADE是等邊三角形,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系.

探究結(jié)論:

先將圖形特殊化,得出猜想,再對一般情況進行分析并加以證明.

(1)當點D與點C重合時(如圖2),請你補全圖形.由∠BAC的度數(shù)為________,點E落在AB上,容易得出BEDE之間的數(shù)量關(guān)系為________;

(2)當點D在如圖3的位置時,請你畫出圖形,研究線段BEDE之間的數(shù)量關(guān)系是否與(1)中的結(jié)論相同,寫出你的猜想并加以證明.

拓展應(yīng)用:

(3)如圖4,在平面直角坐標系xOy中,點A的坐標為(,1),點B是x軸上的一動點,以AB為邊作等邊三角形ABC.當C(x,y)在第一象限內(nèi)時,求y與x的函數(shù)關(guān)系式.

答案:
解析:

  (1)60°,BE=DE.(4分)

  (2)完成畫圖如圖.猜想:

  證明:取AB的中點F,連結(jié)EF

  ∵,

  ∴,

  ∴△是等邊三角形.

  ∴.①

  ∵△ADE是等邊三角形,

  ∴

  .②

  ∴

  ∴

  即.③

  由①②③得△ACD≌△AFE(SAS).

  ∴

  ∵FAB的中點,

  ∴EFAB的垂直平分線.

  ∴BE=AE

  ∵△ADE是等邊三角形,

  ∴DE=AE

  ∴BE=DE.(4分)

  (3)如圖,過A作AD⊥x軸,交x軸于D,由A(-,1)得∠AOD=30°,過C分別作CE⊥OA,垂足為E,CF⊥x軸,垂足為F,則ΔACE≌ΔADB,得AE=AD=1,又∵OA=2AD=2,∴OA=1,∴ΔACE≌ΔEOC,則CO=AC=CB,OF=FB=x,在RtΔCOF中,y2+x2=OC2=AB2=12+(+2x)2,得y2=3x2+4x+4,∴y=±(x+2(取正),即y=x+2(4分)


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:如圖,點C是半圓O上一動點(點C與A、B不重合),AB=2,連接AC、BC、OC,將△AOC沿直線AC翻折得△ADC,點、E、F、G、H分別是DA、AO、OC、CD的中點.
(1)猜想證明:猜想四邊形AOCD以及四邊形EFGH的形狀,并證明你的結(jié)論;
(2)拓展探究:探究點C在半圓弧上哪個位置時,四邊形EFGH面積最大?求出這個最大精英家教網(wǎng)值,判斷此時四邊形EFGH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•臨川區(qū)模擬)問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖4所示),且
AB
BC
=
CE
CG
=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•日照)問題背景:
如圖(a),點A、B在直線l的同側(cè),要在直線l上找一點C,使AC與BC的距離之和最小,我們可以作出點B關(guān)于l的對稱點B′,連接A B′與直線l交于點C,則點C即為所求.

(1)實踐運用:
如圖(b),已知,⊙O的直徑CD為4,點A 在⊙O 上,∠ACD=30°,B 為弧AD 的中點,P為直徑CD上一動點,則BP+AP的最小值為
2
2
2
2

(2)知識拓展:
如圖(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點D,E、F分別是線段AD和AB上的動點,求BE+EF的最小值,并寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖所示),且數(shù)學(xué)公式=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:臨川區(qū)模擬 題型:解答題

問題背景:如圖1,四邊形ABCD和CEFG都是正方形,B,C,E在同一條直線上,連接BG,DE.
問題探究:
(1)①如圖1所示,當G在CD邊上時,猜想線段BG、DE的數(shù)量關(guān)系及所在直線的位置關(guān)系.(不要求證明)
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2,如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,請選擇圖2或圖3證明你的判斷.
類比研究:
(2)若將原題中的“正方形”改為“矩形”(如圖所示),且
AB
BC
=
CE
CG
=k(其中k>0),請直接寫出線段BG、DE的數(shù)量關(guān)系及位置關(guān)系.請選擇圖5或圖6證明你的判斷.
拓展應(yīng)用:
(3)在(1)中圖2中,連接DG、BE,若AB=3,EF=2,求BE2+DG2的值.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案