【題目】矩形的一角平分線分一邊為 3cm 4cm 兩部分,則這個矩形的對角線的長為_____

【答案】

【解析】

存在2種情況,被分的邊長為3cm4cm4cm、3cm,然后再利用正方形的性質得到矩形另一邊長,最后用勾股股定理求得斜邊長.

情況一:如下圖,四邊形ABCD是矩形,BE是∠ABC的角平分線,AE=3cm,ED=4cm,連接BD

BE是∠ABC的角平分線,四邊形ABCD是矩形

∴∠ABE=45°,∠A=90°

∴△ABE是等腰直角三角形

AE=3cm,∴AB=3cm=DC

RtDCB中,BC=7cm,DC=3cm,∴BD=

情況二:如下圖,四邊形ABCD是矩形,BE是∠ABC的角平分線,AE=4cmED=3cm,連接BD

同理,AE=4cm,∴AB=4cm=DC

RtDCB中,BC=7cm,DC=4cm,∴BD=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

A.中位數(shù)就是一組數(shù)據(jù)中最中間的一個數(shù)

B.這組數(shù)據(jù)02,3,3,46的方差是2.1

C.一組數(shù)據(jù)的標準差越大,這組數(shù)據(jù)就越穩(wěn)定

D.如果的平均數(shù)是,那么

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1ABCD,求∠A+AEC+C的度數(shù).

解:過點EEFAB

EFAB(已作)

∴∠A+AEF=180°______

又∵ABCD(已知)

EFCD______

∴∠CEF+______=180°(兩直線平行,同旁內角互補)

∴∠A+AEF+CEF+C=360°(等式性質)

即∠A+AEC+C=______

2)根據(jù)上述解題及作輔助線的方法,在圖2中,ABEF,則∠B+C+D+E=______

3)根據(jù)(1)和(2)的規(guī)律,圖3ABGF,猜想:∠B+C+D+E+F=______

4)如圖4,ABCD,在B,D兩點的同一側有M1M2,M3,Mnn個折點,則∠B+M1+M2+…+Mn+D的度數(shù)為______(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.

(1)求拋物線的解析式;

(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;

(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以正方形ABCD的邊AB為一邊向外作等邊ABE,則BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:BCOA,∠B=A=120°,試回答下列問題:

(1)如圖1所示,求證:OBAC;

(2)如圖2,若點E、FBC上,且滿足∠FOC=AOC,并且OE平分∠BOF,則∠EOC的度數(shù)是______

(3)(2)的條件下,若平行移動AC,其它條件不變,如圖3,則∠OCB:∠OFB的值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知△ABC中,P是邊AB上的一點,連接CP.

(1)要使△ACP∽△ABC,還需要補充的一個條件是_____

2)若△ACP∽△ABC,且AC=,AB=3,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學生進行調查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖,如圖所示:

(1)補全條形統(tǒng)計圖;

(2)求扇形統(tǒng)計圖中扇形D的圓心角的度數(shù);

(3)若該中學有2000名學生,請估計其中有多少名學生能在1.5 h內完成家庭作業(yè).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】519,中國首個旅游日正式啟動,某校組織了由八年級800名學生參加的旅游地理知識競賽.李老師為了了解對旅游地理知識的掌握情況從中隨機抽取了部分同學的成績作為樣本,把成績按優(yōu)秀、良好、及格、不及格4個級別進行統(tǒng)計并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖部分信息未給出).

請根據(jù)以上提供的信息,解答下列問題

1求被抽取的部分學生的人數(shù);

2請補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中表示及格的扇形的圓心角度數(shù)

3請估計八年級的800名學生中達到良好和優(yōu)秀的總人數(shù)

查看答案和解析>>

同步練習冊答案