【題目】已知:如圖,在平行四邊形ABCD中,AC為對角線,E是邊AD上一點,BE⊥AC交AC于點F,BE、CD的延長線交于點G,且∠ABE=∠CAD.
(1)求證:四邊形ABCD是矩形;
(2)如果AE=EG,求證:AC2=BCBG.
【答案】(1)見解析;(2)見解析.
【解析】
(1)、因為四邊形ABCD是平行四邊形,所以只要證明∠BAD=90°,即可得到四邊形ABCD是矩形;(2)、連接AG,由平行四邊形的性質(zhì)和矩形的性質(zhì)以及結(jié)合已知條件可證明△BCG∽△ABC,再由相似三角形的性質(zhì):對應(yīng)邊的比值相等即可證明AC2=BCBG.
(1)、解:證明: ∵BE⊥AC, ∴∠AFB=90°.
∴∠ABE+∠BAF=90°. ∵∠ABE=∠CAD. ∴∠CAD+∠BAF=90°. 即∠BAD=90°.
∵四邊形ABCD是平行四邊形, ∴四邊形ABCD是矩形;
(2)、解:連接AG. ∵AE=EG, ∴∠EAG=∠EGA, ∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC, ∴∠ABG=∠BGC, ∴∠CAD=∠BGC, ∴∠AGC=∠GAC,
∴CA=CG, ∵AD∥BC, ∴∠CAD=∠ACB, ∴∠ACB=∠BGC,
∵四邊形ABCD是矩形, ∴∠BCG=90°, ∴∠BCG=∠ABC, ∴△BCG∽△ABC,
∴ , ∴AC2=BCBG.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種商品按銷售量分三部分制定銷售單價,如下表:
銷售量 | 單價 |
不超過100件的部分 | 2.8元/件 |
超過100件不超過300件的部分 | 2.2元/件 |
超過300件的部分 | 2元/件 |
(1)若買100件花 元,買300件花 元;買380件花 元;
(2)小明買這種商品花了500元,求購買了這種商品多少件;
(3)若小明花了n元(n>280),恰好購買0.4n件這種商品,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,
(1)求∠EAF的度數(shù);
(2)在圖①中,連結(jié)BD分別交AE、AF于點M、N,將△ADN繞點A順時針旋轉(zhuǎn)90°至△ABH位置,連結(jié)MH,得到圖②.求證:MN2=MB2+ ND2 ;
(3)在圖②中,若AG=12, BM=,直接寫出MN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,小慧同學(xué)利用直尺和規(guī)進(jìn)行了如下操作:①連接AC,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點P、Q;②作直線PQ,分別交BC、AC、AD于點E、O、F,連接AE、CF.根據(jù)操作結(jié)果,解答下列問題:
(1)線段AF與CF的數(shù)量關(guān)系是 .
(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與x軸交于點A(-3,0),直線y=-x+2與x軸、y軸分別交于B、C兩點,并與直線y=x+m相交于點D,
(1)點D的坐標(biāo)為 ;
(2)求四邊形AOCD的面積;
(3)若點P為x軸上一動點,當(dāng)PD+PC的值最小時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)下面兩個立體圖形的名稱是:__________,__________
(2)一個立體圖形的三視圖如下圖所示,這個立體圖形的名稱是__________
(3)畫出下面立體圖形的主視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為一棵大樹,在樹上距地面10 米的D處有兩只猴子,他們同時發(fā)現(xiàn)C處有一筐水果,一只猴子從D處往上爬到樹頂A處,又沿滑繩AC滑到C處,另一只猴子從D滑到B,再由B跑到C處,已知兩只猴子所經(jīng)路程都為40米,求樹高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.
(1)如圖1,當(dāng)t=3時,求DF的長.
(2)如圖2,當(dāng)點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com