【題目】(1)證明推斷:如圖(1),在正方形ABCD中,點E,Q分別在邊BC,AB上,DQ⊥AE于點O,點G,F分別在邊CD,AB上,GF⊥AE.
①求證:DQ=AE;
②推斷:的值為 ;
(2)類比探究:如圖(2),在矩形ABCD中,=k(k為常數(shù)).將矩形ABCD沿GF折疊,使點A落在BC邊上的點E處,得到四邊形FEPG,EP交CD于點H,連接AE交GF于點O.試探究GF與AE之間的數(shù)量關系,并說明理由;
(3)拓展應用:在(2)的條件下,連接CP,當k=時,若tan∠CGP=,GF=2,求CP的長.
【答案】(1)①見解析;②1;(2)=k,見解析;(3)PC=.
【解析】
(1)①由正方形的性質得AB=DA,∠ABE=90°=∠DAQ.所以∠QAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠QAO=∠ADO,于是△ABE≌△DAQ,可得AE=DQ.
②證明四邊形DQFG是平行四邊形即可解決問題.
(2)結論:.如圖2中,作GM⊥AB于M.證明△ABE∽△GMF即可解決問題.
(3)如圖2中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.
(1)①證明:∵四邊形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAQ.
∴∠QAO+∠OAD=90°.
∵AE⊥DQ,
∴∠ADO+∠OAD=90°.
∴∠QAO=∠ADO.
∴△ABE≌△DAQ(ASA),
∴AE=DQ.
②結論:.
理由:∵DQ⊥AE,FG⊥AE,
∴DQ∥FG,
∵FQ∥DG,
∴四邊形DQFG是平行四邊形,
∴FG=DQ,
∵AE=DQ,
∴FG=AE,
∴,
故答案為:1;
(2)結論:.
理由:如圖2中,作GM⊥AB于M.
∵AE⊥GF,
∴∠AOF=∠GMF=∠ABE=90°,
∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,
∴∠BAE=∠FGM,
∴△ABE∽△GMF,
∴,
∵∠AMG=∠D=∠DAM=90°,
∴四邊形AMGD是矩形,
∴GM=AD,
∴.
(3)如圖2中,作PM⊥BC交BC的延長線于M.
∵FB∥GC,FE∥GP,
∴∠CGP=∠BFE,
∴tan∠CGP=tan∠BFE=,
∴假設BE=3m,BF=4m,EF=AF=5m,
∵,FG=2,
∴AE=3,
∴BE2+AB2=AE2,
∴(3m)2+(9m)2=(3)2,
∴m=1或﹣1(舍棄),
∴BE=3,AB=9,
∵BC:AB=2:3,
∴BC=6,
∴BE=CE=3,AD=PE=BC=6,
∵∠EBF=∠FEP=∠PME=90°,
∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,
∴∠FEB=∠EPM,
∴△FBE∽△EMP,
∴,
∴,
∴EM=,PM=,
∴CM=EM﹣EC=﹣3=,
∴PC=.
科目:初中數(shù)學 來源: 題型:
【題目】長沙市教育局組織部分教師分別到A、B、C、D四個地方進行課程培訓,教育局按定額購買了前往四地的車票,如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)若去A地的車票占全部車票的20%,求去C地的車票數(shù),并補全條形統(tǒng)計圖(圖1);
(2)請從小到大寫出這四類車票數(shù)的數(shù)字,并直接寫出這四個數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)如圖2,甲轉盤被分成四等份且標有數(shù)字1、2、3、4,乙轉盤分成三等份且標有數(shù)字7、8、9,具體規(guī)定是:同時轉動兩個轉盤,當指針指向的兩個數(shù)字之和是偶數(shù)時,李老師出去培訓,否則張老師出去培訓(指針指在線上重轉),試用“列表法”或“樹狀圖”的方法分析這個規(guī)定對雙方是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作 d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.
(1)當⊙O的半徑為2時,
①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直線與⊙O互為“可及圖形”,求b的取值范圍;
(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,直線y1=2x+4分別與x軸,y軸交于A,B兩點,以線段OB為一條邊向右側作矩形OCDB,且點D在直線y2=﹣x+b上,若矩形OCDB的面積為20,直線y1=2x+4與直線y2=﹣x+b交于點P.則P的坐標為( 。
A.(2,8)B.C.D.(4,12)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與y軸交于點,與反比例函數(shù)在第二象限內的圖象相交于點.
(1)求直線AB的解析式;
(2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;
(3)設直線CD的解析式為,根據(jù)圖象直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在方格紙中,每個方格的頂點叫做格點,以格點連線為邊的三角形叫做格點三角形.如圖甲中,每個小正方形的邊長為1,以線段AB為一邊的格點三角形隨著第三個頂點的位置不同而發(fā)生變化.
(1)根據(jù)圖甲,填寫下表,并計算出格點三角形面積的平均值;
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) |
(2)在圖乙中,所給的方格紙大小與圖甲一樣,如果以線段CD為一邊,作格點三角形,試填寫下表,并計算出格點三角形面積的平均值;
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) |
(3)如果將圖乙中格點三角形面積記為s,頻數(shù)記為x,根據(jù)你所填寫的數(shù)據(jù),猜測s與x之間存在哪種函數(shù)關系,并求出函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】網(wǎng)絡銷售是一種重要的銷售方式.某鄉(xiāng)鎮(zhèn)農貿公司新開設了一家網(wǎng)店,銷售當?shù)剞r產品.其中一種當?shù)靥禺a在網(wǎng)上試銷售,其成本為每千克10元.公司在試銷售期間,調查發(fā)現(xiàn),每天銷售量y(kg)與銷售單價x(元)滿足如圖所示的函數(shù)關系(其中).
(1)直接寫出y與x之間的函數(shù)關系式及自變量的取值范圍.
(2)若農貿公司每天銷售該特產的利潤要達到3100元,則銷售單價x應定為多少元?
(3)設每天銷售該特產的利潤為W元,若,求:銷售單價x為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com