如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖, AC∥DF,直線AF分別與直線BD、CE 相交于點G、H,∠1=∠2,
求證: ∠C=∠D.
解:∵∠1=∠2(已知)
∠1=∠DGH( ),
∴∠2=__ _______( 等量代換 )
∴ // ___________( 同位角相等,兩直線平行 )
∴∠C=_ _( 兩直線平行,同位角相等 )
又∵AC∥DF( )
∴∠D=∠ABG ( )
∴∠C=∠D ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度數(shù);
(2)∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AC∥DF,C、E分別在AB、DF上,小華想知道∠ACE和∠DEC是否互補,但是他有沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點O,然后連結(jié)EO并延長EO和直線AB相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF。
以下是他的想法,請你填上根據(jù)。小華是這樣想的:
因為CF和BE相交于點O,
根據(jù) 得出∠COB=∠EOF;
而O是CF的中點,那么CO=FO,又已知 EO=BO,
根據(jù) 得出△COB≌△FOE,
根據(jù) 得出BC=EF,
根據(jù) 得出∠BCO=∠F,
既然∠BCO=∠F,根據(jù) 出AB∥DF,
既然AB∥DF,根據(jù) 得出∠ACE和∠DEC互補.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.
(1)如果∠AOD=40°,
①那么根據(jù) ,可得∠BOC= 度.
②∠POF的度數(shù)是 度.
(2)圖中除直角外,還有相等的角嗎?請寫出三對:
① ;
② ;
③ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com