和兩平行直線a,b都相切的圓的圓心的軌跡是什么?

 

答案:軌跡是和a,b平行且距離相等的一條直線。
提示:

圓心與a,b的距離為圓的半徑

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,∠1=∠2,由此可得哪兩條直線平行( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖(1),AB∥CD,猜想∠BPD與∠B、∠D的關(guān)系,說(shuō)出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過(guò)點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,并說(shuō)明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的關(guān)系,不需要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c為直線,因?yàn)閍∥b,b∥c,所以有
a∥c
a∥c
,理由是
如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行
如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線AB∥CD,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD;
請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過(guò)點(diǎn)P作MN∥AB,
則∠EPM=∠PEB
(兩直線平行,內(nèi)錯(cuò)角相等)
(兩直線平行,內(nèi)錯(cuò)角相等)

∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠MPF=∠PFD
(兩直線平行,內(nèi)錯(cuò)角相等)
(兩直線平行,內(nèi)錯(cuò)角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點(diǎn)P在圖3的位置時(shí),請(qǐng)直接寫出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

同步練習(xí)冊(cè)答案