【題目】如圖,點A,B為反比例函數(shù)y=在第一象限上的兩點,ACy軸于點C,BDx軸于點D,若B點的橫坐標是A點橫坐標的一半,且圖中陰影部分的面積為k2,則k的值為(  )

A. B. C. D.

【答案】B

【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征,設Bt,),則AC2CE2t,可表示出A2t),由點B和點A的縱坐標可知BD2OC,然后根據(jù)三角形面積公式得到關于k的方程,解此方程即可.

解:設Bt),

ACy軸于點C,BDx軸于點D,B點的橫坐標是A點橫坐標的一半,

AC2CE2t

A2t,),

BD2OC2BE

OCMBEM

∴△OCM≌△BEM,

CMEM=,

同理可證:ODN≌△AEN,

ENDN=

∴陰影部分的面積=

解得:k=

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(9)某中學學生為了解該校學生喜歡球類活動的情況,隨機抽取了若干名學生進行問卷調(diào)查(要求每位學生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

(1)參加調(diào)查的學生共有 人,在扇形圖中,表示其他球類的扇形的圓心角為 度;

(2)將條形圖補充完整;

(3)若該校有2000名學生,則估計喜歡籃球的學生共有 人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:

(1)本次抽查的樣本容量是 ;

(2)在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應的圓心角為 度;

(3)將條形統(tǒng)計圖補充完整;

(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能獨立思考的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點O和點A(2,0).

(1)寫出拋物線的對稱軸與x軸的交點坐標;

(2)點(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大。

(3)點B(﹣1,2)在該拋物線上,點C與點B關于拋物線的對稱軸對稱,求直線AC的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BE是⊙O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點C

I)若∠ADE=25°,求∠C的度數(shù)

II)若AB=AC,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD2AB,EAD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB、BC分別交于點MN,求證:BMCN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為滿足市場需求,某超市購進一種水果,每箱進價是40元.超市規(guī)定每箱售價不得少于45元,根據(jù)以往經(jīng)驗發(fā)現(xiàn):當售價定為每箱45元時,每天可以賣出700箱.每箱售價每提高1元,每天要少賣出20箱.

1)求出每天的銷量y(箱)與每箱售價x(元)之間的函數(shù)關系式,并直接寫出x的范圍;

2)當每箱售價定為多少元時,每天的銷售利潤w(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關部分規(guī)定:每箱售價不得高于70元.如果超市想要每天獲得的利潤不低于5120元,請直接寫出售價x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點QQO⊥BD,垂足為O,連接OA、OP.

(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?

(2)請判斷OA、OP之間的數(shù)量關系和位置關系,并加以證明;

(3)在平移變換過程中,設y=SOPB,BP=x(0≤x≤2),求yx之間的函數(shù)關系式,并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(,),點Q的坐標為(,),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點PQ相關矩形.下圖為點P,Q 相關矩形的示意圖.

1)已知點A的坐標為(1,0).

若點B的坐標為(3,1)求點A,B相關矩形的面積;

C在直線x=3上,若點A,C相關矩形為正方形,求直線AC的表達式;

2O的半徑為,點M的坐標為(m,3).若在O上存在一點N,使得點M,N相關矩形為正方形,求m的取值范圍.

查看答案和解析>>

同步練習冊答案