【題目】某家具廠生產(chǎn)一種課桌和椅子,課桌每張定價180元,椅子每把定價80元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
方案一:每買一張課桌就贈送一把椅子
方案二:課桌和椅子都按定價的80%付款
某校計劃添置100張課桌和把椅子,
(1)若,請計算哪種方案劃算;
(2)若,請用含的代數(shù)式分別把兩種方案的費用表示出來
(3)若,喬亞萍認為用方案一購買省錢,小蘭認為用方案二購買省錢,如果兩種方案可以同時使用,你能幫助學(xué)校設(shè)計一種比喬亞萍和小蘭的方案都更省錢的方案嗎?若能,請你寫出方案,若不能,請說明理由.
【答案】(1)方案一劃算;(2)方案一:(80x+10000),方案二:(64x+14400);(3)先按方案一購買100張桌子,同時送100把椅子;再按方案二購買220把椅子最省.
【解析】
(1)當x=100時,根據(jù)各自的優(yōu)惠方案,分別求出兩種方案的錢數(shù),比較即可;
(2)當x>100時,分別表示出兩種方案的錢數(shù)即可;
(3)方案設(shè)計問題,可以兩個方案結(jié)合在一起使用,
解:(1)當x=100時,
方案一:100×180=18000(元);
方案二:100×(180+80)×80%=20800(元),
∵18000<20800,
∴方案一劃算;
(2)當x>100時,
方案一:100×180+80(x-100)=80x+10000;
方案二:(100×180+80x)×80%=64x+14400,
答:方案一、方案二的費用為:(80x+10000)、(64x+14400)元;
(3)當x=320時,
方案一:100×180+80×(320-100)=35600(元);
方案二:(100×180+80×320)×80%=34880(元);
方案三:先按方案一購買100張課桌,同時送100把椅子;再按方案二購買220把椅子,
100×180+80×220×80%=32080(元),
35600>34880>32080,
則先按方案一購買100張桌子,同時送100把椅子;再按方案二購買220把椅子最。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華間學(xué)早晨跑步,他從自己家出發(fā).先向東跑了2km則達小盛家,又繼續(xù)向東跑了1.5km到這小昌家,然后又向西跑到學(xué)校.如果小華跑步的速度是均勻的,且到達小盛家用了8分鐘,整個跑步過程共用時32分鐘,以小華家為原點,向東為正方向,用1個單位長度表示1km,建立數(shù)軸.
(1)依題意畫出數(shù)軸,分別用點A表示出小盛家、用點B表示出小昌家;
(2)在數(shù)軸上,用點C表示出學(xué)校的位置;
(3)求小盛家與學(xué)校之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標系中,已知點A(﹣1,2),B(3,4).
(1)畫出△ABO向上平移2個單位,再向左平移4個單位后所得的圖形△A′B′O′;
(2)寫出A、B、O后的對應(yīng)點A′、B′、O′的坐標;
(3)求兩次平移過程中OB共掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某童裝廠現(xiàn)有甲種布料38米,乙種布料26米,現(xiàn)計劃用這兩種布料生產(chǎn)L.M兩種型號的童裝共50套.已知做一套L.M型號的童裝所需用布料和所獲得利潤如下表:
甲種布料 | 乙種布料 | 獲 利 | |
L型 | 0.5米 | 1米 | 45元 |
M型 | 0.9米 | 0.2米 | 30元 |
假設(shè)L型號的服裝生產(chǎn)套,請你寫出滿足題意的不等式組,求出其解集;并根據(jù)計算結(jié)果,設(shè)計生產(chǎn)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
尺規(guī)作圖:作一條線段的垂直平分線.
已知:線段AB.
求作:線段AB的垂直平分線.
小紅的作法如下:
如圖,①分別以點A和點B為圓心,大于AB的長為半徑作弧,兩弧相交于點C;
②再分別以點A和點B為圓心,大于AB的長為半徑(不同于①中的半徑)作弧,兩弧相交于點D,使點D與點C在直線AB的同側(cè);
③作直線CD.
所以直線CD就是所求作的垂直平分線.
老師說:“小紅的作法正確.”
請回答:小紅的作圖依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知直線 AB、CD 相交于點 O,∠COE=90°
(1)若∠AOC=36°,求∠BOE 的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE 的度數(shù).
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點重合,在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)中,k的值的變化情況是( )
A. 一直增大B. 一直減小C. 先增大后減小D. 先減小后增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com