【題目】北京時間5月27日,蛟龍?zhí)栞d人潛水器在太平洋馬里亞納海溝作業(yè)區(qū)開展了本航段第3次下潛,最大下潛深度突破6500米,數(shù)6500用科學(xué)記數(shù)法表示為(
A.65×102
B.6.5×102
C.6.5×103
D.6.5×104

【答案】C
【解析】解:數(shù)6500用科學(xué)記數(shù)法表示為6.5×103 . 故選:C.
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點D是弧AE上一點,且∠BDE=CBE,BDAE交于點F.

(1)求證:BC是⊙O的切線;

(2)若BD平分∠ABE,求證:DE2=DF·DB;

(3)在(2)的條件下,延長ED,BA交于點P,若PA=AO,DE=2,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,CDl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌專賣店對上個月銷售的男運動鞋尺碼統(tǒng)計如下:

碼號(碼)

38

39

40

41

42

43

44

銷售量(雙)

6

8

14

20

17

3

1

這組統(tǒng)計數(shù)據(jù)中的眾數(shù)是碼.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點PBC上任意一點(可與點BC重合),分別過BC、D作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形OABC中,點B的坐標(biāo)是(4,4),點E、F分別在邊BC、BA上,OE=2 .若∠EOF=45°,則F點的縱坐標(biāo)是(
A.
B.1
C.
D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[(x﹣y)2]3(x﹣y)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,AB>AC,射線AM平分∠BAC.

(1)設(shè)AM交BC于點D,DE⊥AB于點E,DF⊥AC于點F,連接EF.有以下三種“判斷”:
判斷1:AD垂直平分EF.
判斷2:EF垂直平分AD.
判斷3:AD與EF互相垂直平分.
你同意哪個“判斷”?簡述理由;
(2)若射線AM上有一點N到△ABC的頂點B,C的距離相等,連接NB,NC.
①請指出△NBC的形狀,并說明理由;
②當(dāng)AB=11,AC=7時,求四邊形ABNC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,過A點作AG∥DB交CB的延長線于點G.

(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形;
(3)請利用備用圖分析,在(2)的條件下,若BE=4,∠DEB=120°,點M為BF的中點,當(dāng)點P在BD邊上運動時,求PF+PM的最小值,并求出此時線段BP的長.

查看答案和解析>>

同步練習(xí)冊答案