【題目】設(shè)O是等邊三角形ABC內(nèi)一點,已知∠AOB=130°,∠BOC=125°,則在以線段OA,OB,OC為邊構(gòu)成的三角形中,內(nèi)角不可能取到的角度是( )
A.65° B.60° C.45° D.70°
【答案】B
【解析】
試題分析:以B為中心,將△BOA逆時針方向旋轉(zhuǎn)60°,則點A落在點C上,點O落在點D上,連接OD,找出△COD即為以線段OA,OB,OC為邊構(gòu)成的三角形,再由角與角之間的關(guān)系即可得出結(jié)論.
解:以B為中心,將△BOA逆時針方向旋轉(zhuǎn)60°,則點A落在點C上,點O落在點D上,連接OD,如圖所示.
∵OB=BD,∠OBD=60°,
∴△BOD是等邊三角形,
∴OD=OB,
又∵CD=OA,
故△COD是以OA,OB,OC為邊構(gòu)成的一個三角形.
∵∠BOC=125°,∠BOD=60°,
∴∠COD=65°;
又∵∠BDC=∠AOB=130°,∠BDO=60°,
∴∠ODC=70°;
從而∠OCD=180°﹣65°﹣70°=45°.
故求得以線段OA,OB,OC為邊構(gòu)成的三角形的各角為65°,70°,45°.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果a+b=c,且a、b都大于c,那么a、b一定是( )
A. 同為負(fù)數(shù) B. 一個正數(shù)一個負(fù)數(shù) C. 同為正數(shù) D. 一個負(fù)數(shù)一個是零
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,則弦BC的弦心距等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】美國航空航天局發(fā)布消息,2011年3月19日,月球?qū)⒌竭_(dá)19年來距離地球最近的位置,它與地球的距離約為356000千米,其中356000用科學(xué)記數(shù)法表示為 ( 。
A. 3.56×105 B. 0.356×106 C. 3.56×104 D. 35.6×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場統(tǒng)計了每個營業(yè)員在某月的銷售額,統(tǒng)計圖如下,根據(jù)統(tǒng)計圖中給出的信息,解答下列問題:
(1)設(shè)營業(yè)員的月銷售額為x(單位:萬元),商場規(guī)定:當(dāng)x<15時為不稱職,當(dāng)15≤x<20時,為基本稱職,當(dāng)20≤x<25為稱職,當(dāng)x≥25時為優(yōu)秀.稱職和優(yōu)秀的營業(yè)員共有多少人?所占百分比是多少?
(2)根據(jù)(1)中規(guī)定,所有稱職以上(職稱和優(yōu)秀)的營業(yè)員月銷售額的中位數(shù)、眾數(shù)和平均數(shù)分別是多少?
(3)為了調(diào)動營業(yè)員的工作積極性,決定制定月銷售額獎勵標(biāo)準(zhǔn),凡到達(dá)或超過這個標(biāo)準(zhǔn)的營業(yè)員將受到獎勵.如果要使得稱職以上(稱職和優(yōu)秀)的營業(yè)員有一半能獲獎,你認(rèn)為這個獎勵標(biāo)準(zhǔn)應(yīng)定月銷售額為多少元合適?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是矩形ABCD的邊AD上一個動點,矩形的兩條邊AB、BC的長分別為6和8,那么點P到矩形的兩條對角線AC和BD的距離之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個完全相同的直角三角形紙片△ABC、△DEF,如圖1放置,點B、D重合,點F在BC上,AB與EF交于點G.∠C=∠EFB=90°,∠E=∠ABC=30°,現(xiàn)將圖1中的△ABC繞點F按每秒10°的速度沿逆時針方向旋轉(zhuǎn)180°,在旋轉(zhuǎn)的過程中,△ABC恰有一邊與DE平行的時間為___________s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點P.
(1)如果∠A=80°,求∠BPC的度數(shù);
(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.
(3)如圖③,延長線段BP、QC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊,在BC的同側(cè)分別作3個等邊三角形,即△ABD、△BCE、△ACF.
(1)求證:四邊形ADEF是平行四邊形?
(2)當(dāng)△ABC滿足什么條件時,四邊形ADEF是矩形,并說明理由.
(3)當(dāng)△ABC滿足什么條件時,邊形ADEF是菱形,并說明理由.
(4)當(dāng)△ABC滿足什么條件時,四邊形ADEF是正方形,不要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com