精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標為(0,6),將△BCD沿BD折疊(D點在OC上),使C點落在OA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.
(1)求BC的長,并求折痕BD所在直線的函數解析式;
(2)過點F作FG⊥x軸,垂足為G,FG的中點為H,若拋物線y=ax2+bx+c經過B、H、D三點,求拋物線解析式;
(3)點P是矩形內部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC,分別交BC和BD于點N、M,是否存在這樣的點P,使S△BNM=S△BPM?如果存在,求出點P的坐標;如果不存在,請說明理由.
(1)由翻折可知:△BCD≌△BED,∴∠CBD=∠DBE.
又∵△ABE≌△FBE,∴∠DBE=∠ABE.
又∵四邊形OCBA為矩形,
∴∠CBD=∠DBE=∠ABE=30°.
在Rt△DOE中,∠ODE=60°,∴DE=CD=2OD.
∵OC=OD+CD=6,∴OD+2OD=6,
∴OD=2,D(0,2),
∴CD=4.
在Rt△CDB中,BC=CD•tan60°=4
3
,∴B(4
3
,6).
設直線BD的解析式為y=kx+b,
由題意得:
b=2
4
3
k+b=6
,解得
k=
3
3
b=2
,
∴直線BD的解析式為:y=
3
3
x+2.

(2)在Rt△FGE中,∠FEG=60°,FE=AE.
由(1)易得:OE=2
3
,
∴FE=AE=2
3

∴FG=3,GE=
3
.∴OG=
3

∵H是FG的中點,
∴H(
3
3
2
).
∵拋物線y=ax2+bx+c經過B、H、D三點,
48a+4
3
b+c=6
c=2
3a+
3
b+c=
3
2
,解得
a=
1
6
b=-
3
3
c=2
,
∴y=
1
6
x2-
3
3
x+2.

(3)存在.
∵P在拋物線上,
∴設P(x,
1
6
x2-
3
3
x+2),M(x,
3
3
x+2),N(x,6).
∵S△BNM=S△BPM,
∴PM=MN.
即:-
1
6
x2+
2
3
3
x=4-
3
3
x,
整理得:x2-2
3
x-4=0,
解得:x=2
3
或x=4
3

當x=2
3
時,y=
1
6
x2-
3
3
x+2=2;
當x=4
3
時,y=
1
6
x2-
3
3
x+2=6,與點B重合,不符合題意,舍去.
∴P(2
3
,2).
∴存在點P,使S△BNM=S△BPM,點P的坐標為(2
3
,2).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖1,拋物線y=ax2-3ax+b經過A(-1,0),C(3,2)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過點E(1,-1)作EF⊥x軸于點F,將△AEF繞平面內某點旋轉180°后得△MNQ(點M,N,Q分別與點A,E,F對應),使點M,N在拋物線上,求點M,N的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知點A(
3
,0),B(-
3
,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
(1)若拋物線y=
1
3
x2+bx+c經過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
(2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最小;
(3)設Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

拋物線經過A、B、C三點,頂點為D,且與x軸的另一個交點為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標,并求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1,在平面直角坐標系中,AB、CD都垂直于x軸,垂足分別為B、D,AD與BC相交于E點,已知:A(-2,-6),C(1,-3),一拋物線經過A,E,C三點.
(1)求點E的坐標及此拋物線的表達式;
(2)如圖2,如果AB位置不變,將DC向右平移k(k>0)個單位,求△AEC的面積S關于k的函數表達式;
(3)在第(2)問中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=-
1
2
x2+bx+c
的圖象經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)求該二次函數圖象的頂點坐標、對稱軸以及二次函數圖象與x軸的另一個交點;
(3)在右圖的直角坐標系內描點畫出該二次函數的圖象及對稱軸.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6cm,AD=3cm,點E在邊DC上,且DE=4cm.動點P從點A開始沿著A?B?C?E的路線以2cm/s的速度移動,動點Q從點A開始沿著AE以1cm/s的速度移動,當點Q移動到點E時,點P停止移動.若點P、Q同時從點A同時出發(fā),設點Q移動時間為t(s),P、Q兩點運動路線與線段PQ圍成的圖形面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,某中學生推鉛球,鉛球在點A處出手,在點B處落地,它的運行路線滿足y=-
1
12
x2+
2
3
x+
5
3
,則這個學生推鉛球的成績是______米.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=x2+2x-3與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的頂點坐標;
(2)設直線y=x+3與y軸的交點是D,在線段AD上任意取一點E(不與A、D重合),經過A、B、E三點的圓交直線AC于點F,試判斷△BEF的形狀.

查看答案和解析>>

同步練習冊答案