【題目】如圖,二次函數(shù)y= x2(0≤x≤2)的圖象記為曲線C1 , 將C1繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得曲線C2 .
(1)請(qǐng)畫出C2;
(2)寫出旋轉(zhuǎn)后A(2,5)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(3)直接寫出C1旋轉(zhuǎn)至C2過程中掃過的面積 .
【答案】
(1)解:如圖,曲線C2即為所求
(2)(﹣5,2)
(3) π
【解析】解:(2)由圖可知,A1(﹣5,2). 所以答案是:(﹣5,2);(3)∵OA= = ,
∴C1旋轉(zhuǎn)至C2過程中掃過的面積= = π.
所以答案是: π.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)圖象的平移(平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(diǎn)(h,k)(2)對(duì)x軸左加右減;對(duì)y軸上加下減),還要掌握扇形面積計(jì)算公式(在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D為斜邊AC延長線上一點(diǎn),過D點(diǎn)作BC的垂線交其延長線于點(diǎn)E,在AB的延長線上取一點(diǎn)F,使得BF=CE,連接EF.
(1)若AB=2,BF=3,求AD的長度;
(2)G為AC中點(diǎn),連接GF,求證:∠AFG+∠BEF=∠GFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,DC=6cm,在DC上存在一點(diǎn)E,沿直線AE把三角形AE折疊,使點(diǎn)D恰好落在BC邊上,設(shè)此點(diǎn)為F,若三角形ABF的面積為24,那么CE長度為__________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )
A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上.正確的是( 。
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線上各有個(gè)點(diǎn),用這個(gè)點(diǎn)按如下規(guī)則連接線段:
①平行線之間的點(diǎn)在連線段時(shí),可以有共同的端點(diǎn),但不能有其它交點(diǎn);
②符合①要求的線段必須全部畫出.
圖展示了當(dāng)時(shí)的情況,此時(shí)圖中三角形的個(gè)數(shù)為;圖展示了當(dāng)時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為.試回答下列問題:
當(dāng)時(shí),請(qǐng)?jiān)趫D中畫出使三角形個(gè)數(shù)最少的圖形,此時(shí)圖中三角形的個(gè)數(shù)是________;
試猜想當(dāng)有對(duì)點(diǎn)時(shí),按上述規(guī)則畫出的圖形中,最少有________個(gè)三角形;
當(dāng)時(shí),按上述規(guī)則畫出的圖形中,最少有________個(gè)三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DBEC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.
(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)90°,請(qǐng)畫出旋轉(zhuǎn)后的△A′B′C′;
(2)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點(diǎn),CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com