【題目】如圖,⊙OABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FHBC,連接AFBCE,ABC的平分線BDAFD,連接BF

1)證明:AF平分∠BAC;

2)證明:BF=FD;

3)若EF=4DE=3,求AD的長.

【答案】1)證明見解析;(2)證明見解析;(3.

【解析】試題分析:(1)連接OF,通過切線的性質(zhì)證OF⊥FH,進(jìn)而由FH∥BC,得OF⊥BC,即可由垂徑定理得到F是弧BC的中點(diǎn),根據(jù)圓周角定理可得∠BAF=∠CAF,由此得證;

2)求BF=FD,可證兩邊的對角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;觀察上述兩個(gè)式子,∠ABD、∠CBD是被角平分線平分∠ABC所得的兩個(gè)等角,而∠CBF∠DAB所對的是等弧,由此可證得∠DBF=∠BDF,即可得證;

3)由EF、DE的長可得出DF的長,進(jìn)而可由(2)的結(jié)論得到BF的長;然后證△FBE∽△FAB,根據(jù)相似三角形得到的成比例線段,可求出AF的長,即可由AD=AF-DF求出AD的長.

試題解析:(1)證明:連接OF

∵FH⊙O的切線

∴OF⊥FH

∵FH∥BC

∴OF垂直平分BC

,

∴∠1=∠2

∴AF平分∠BAC

2)證明:由(1)及題設(shè)條件可知

∠1=∠2,∠4=∠3,∠5=∠2

∴∠1+∠4=∠2+∠3

∴∠1+∠4=∠5+∠3

∵∠1+∠4=∠BDF∠5+∠3=∠FBD,

∴∠BDF=∠FBD

∴BF=FD6分)

3)解:在△BFE△AFB

∵∠5=∠2=∠1,∠AFB=∠AFB

∴△BFE∽△AFB

,

∴BF2=FEFA

,EF=4,BF=FD=EF+DE=4+3=7

AD=AF-DF=AF-DE+EF=.

考點(diǎn): 1.切線的性質(zhì);2.角平分線的性質(zhì);3.垂徑定理;4.相似三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)(操作發(fā)現(xiàn))

如圖 1,在邊長為 1 個(gè)單位長度的小正方形組成的網(wǎng)格中,ABC 的三個(gè)頂點(diǎn)均在格點(diǎn)上.現(xiàn)將ABC 繞點(diǎn) A 按順時(shí)針方向旋轉(zhuǎn) 90°,點(diǎn) B 的對應(yīng)點(diǎn)為 B′,點(diǎn) C 的對應(yīng)點(diǎn)為 C′ 連接 BB′,如圖所示則∠AB′B

2)(解決問題)

如圖 2,在等邊ABC 內(nèi)有一點(diǎn) P,且 PA2,PB PC1,如果將BPC 繞點(diǎn) B 順時(shí)針旋轉(zhuǎn) 60°得出ABP′,求∠BPC 的度數(shù)和 PP′的長;

3)(靈活運(yùn)用)

如圖 3,將(2)題中在等邊ABC 內(nèi)有一點(diǎn) P 改為在等腰直角三角形 ABC 內(nèi)有一點(diǎn)P”,且 BA=BC,PA6,BP4,PC2,求∠BPC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)是第一象限內(nèi)的點(diǎn),直線軸于點(diǎn),交軸負(fù)半軸于點(diǎn).連接,

1)求的面積;

2)求點(diǎn)的坐標(biāo)和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列四項(xiàng)調(diào)查中,方式正確的是  

A. 了解本市中學(xué)生每天學(xué)習(xí)所用的時(shí)間,采用全面調(diào)查的方式

B. 為保證運(yùn)載火箭的成功發(fā)射,對其所有的零部件采用抽樣調(diào)查的方式

C. 了解某市每天的流動人口數(shù),采用全面調(diào)查的方式

D. 了解全市中學(xué)生的視力情況,采用抽樣調(diào)查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn),對連續(xù)作旋轉(zhuǎn)變換,,依次得到的直角頂點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七(1)班學(xué)生為了解某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,已知該小區(qū)用水量不超過的家庭占被調(diào)查家庭總數(shù)的百分比為12%,請根據(jù)以上信息解答下列問題:

級別

月均用水量

頻數(shù)(戶)

6

12

10

4

2

1)本次調(diào)查采用的方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是

2)補(bǔ)全頻率分布直方圖;

3)若將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則月均用水量“”的圓心角度數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題: 同學(xué)們,我們把學(xué)習(xí)新的數(shù)學(xué)知識的時(shí)候,經(jīng)常利用化歸的數(shù)學(xué)思想方法解決問題,比如,我們在學(xué)習(xí)二元一次方程組的解法時(shí),是通過消元的方法將二元方程化歸成我們所 熟悉的一元方程,從而正確求解.下面我們就利用化歸的數(shù)學(xué)方法解決新的問題. 首先,我們把像這樣,只含有一個(gè)未知數(shù),并且未知教的最高次數(shù)是的不等式,稱為一元二次不等式.通過以前的學(xué)習(xí),我們已經(jīng)認(rèn)識了一無一次不等式、一元一次不等式組并掌握 了它們的解法.同學(xué)們,你們能類比一元一次不等式(組)的解法求出一元二次不等式的解 集嗎? 例題:解一元二次不等式為了解決這個(gè)問題,我們需要將一元二次不等式化歸到一元一次不等式(組),通過平方差公式的逆用,我們可以把寫成的形式,從面將轉(zhuǎn)化為,然后再利用兩數(shù)相乘的符號性質(zhì)將一元二次不等式轉(zhuǎn)化成一元一次不等式(組),從而解決問題.

解:

可化為

由有理數(shù)的乘法法則兩數(shù)相乘,同號得正,得①

解不等式組,

解不等式組,

即一元二次不等式的解集為

拓展應(yīng)用:

求一元二次不等式的解集.

求分式不等式的解集.

求一元二次不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,某縣今年將改擴(kuò)建部分中小學(xué),根據(jù)預(yù)算,改擴(kuò)建3所中學(xué)和2所小學(xué)共需資金6200萬元,改擴(kuò)建1所中學(xué)和3所小學(xué)共需資金4400萬元

1)改擴(kuò)建1所中學(xué)和1所小學(xué)所需資金分別是多少萬元?

2)該縣計(jì)劃改擴(kuò)建中小學(xué)共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過8400萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到中小學(xué)的改擴(kuò)建資金分別為每所500萬元和300萬元,請問共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAAB,ADABEAAC,AEAC

1)試說明△ACD≌△AEB

2)若∠ACB90°,連接CE,

①說明EC平分∠ACB;

②判斷DCEB的位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案