【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.

(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.

【答案】
(1)證明:∵AB為⊙O的直徑,

∴∠ACB=90°,

∴AC⊥BC,

又∵DC=CB,

∴AD=AB,

∴∠B=∠D


(2)解:設BC=x,則AC=x﹣2,

在Rt△ABC中,AC2+BC2=AB2,

∴(x﹣2)2+x2=42,

解得:x1=1+ ,x2=1﹣ (舍去),

∵∠B=∠E,∠B=∠D,

∴∠D=∠E,

∴CD=CE,

∵CD=CB,

∴CE=CB=1+


【解析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;(2)首先設BC=x,則AC=x﹣2,由在Rt△ABC中,AC2+BC2=AB2 , 可得方程:(x﹣2)2+x2=42 , 解此方程即可求得CB的長,繼而求得CE的長.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC=AD,且AD∥BC,求證:∠C=2∠D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為(

A.3
B.4
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,…,如此作下去,則△B2015A2016B2016的頂點A2016的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A、B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD、PO.

(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當∠PBA的度數(shù)為時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A、B重合的一個動點,延長BP到點C,使PC=PB,D是AC的中點,連接PD、PO.

(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當∠PBA的度數(shù)為時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.
(1)判斷DH與⊙O的位置關(guān)系,并說明理由;
(2)求證:H為CE的中點;
(3)若BC=10,cosC= ,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)那天,小賢回家看到桌上有一盤粽子,其中有豆沙粽、肉粽各1個,蜜棗粽2個,這些粽子除餡外無其他差別.
(1)小賢隨機地從盤中取出一個粽子,取出的是肉粽的概率是多少?
(2)小賢隨機地從盤中取出兩個粽子,試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求出小賢取出的兩個都是蜜棗粽的概率.

查看答案和解析>>

同步練習冊答案