【題目】如圖1,甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,甲車到達(dá)C地后因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖2,結(jié)合圖象信息解答下列問(wèn)題:

(1)乙車的速度是   千米/時(shí),乙車行駛的時(shí)間t=   小時(shí);

(2)求甲車C地按原路原速返回A地的過(guò)程中,甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式;

(3)直接寫(xiě)出甲車出發(fā)多長(zhǎng)時(shí)間兩車相距80千米.

【答案】(1) 乙車速度為:80千米/時(shí),乙車行駛?cè)痰臅r(shí)間6小時(shí);(2)y=﹣120x+600;(3)甲車出發(fā)小時(shí)或3小時(shí)或兩車相距80千米

【解析】

(1)結(jié)合題意,利用速度=路程÷時(shí)間,可得乙的速度、行駛時(shí)間;

(2)找到甲車到達(dá)C地和返回A地時(shí)xy的對(duì)應(yīng)值,利用待定系數(shù)法可求出函數(shù)解析式;

(3)甲、乙兩車相距80千米有兩種情況:

相向而行:相等關(guān)系為“甲車行駛路程+乙車行駛路程+甲乙間距離=480”,

同向而行:相等關(guān)系為“甲車距它出發(fā)地的路程+乙車路程﹣甲乙間距離=480”

分別根據(jù)相等關(guān)系列方程可求解.

解:(1)∵乙車比甲車先出發(fā)1小時(shí),由圖象可知乙行駛了80千米,

∴乙車速度為:80千米/時(shí),乙車行駛?cè)痰臅r(shí)間t=480÷80=6(小時(shí));

(2)根據(jù)題意可知甲從出發(fā)到返回A地需5小時(shí),

∵甲車到達(dá)C地后因立即按原路原速返回A地,

∴結(jié)合函數(shù)圖象可知,當(dāng)x=時(shí),y=300;當(dāng)x=5時(shí),y=0;

設(shè)甲車從C地按原路原速返回A地時(shí),即≤x≤5,

甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式為:y=kx+b,

函數(shù)關(guān)系式得:,

解得:,

故甲車從C地按原路原速返回A地時(shí),

甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式為:y=﹣120x+600;

(3)由題意可知甲車的速度為: =120(千米/時(shí)),

設(shè)甲車出發(fā)m小時(shí)兩車相距80千米,有以下兩種情況:

①兩車相向行駛時(shí),有:120m+80(m+1)+80=480,

解得:m=

②兩車同向行駛時(shí),有:600﹣120m+80(m+1)﹣80=480,

解得:m=3;

③兩車相遇之后,甲返回前,有120m+80(m+1)﹣80=480,

解得:m=;

∴甲車出發(fā)小時(shí)或3小時(shí)或兩車相距80千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,的頂點(diǎn)均在格點(diǎn)上.(畫(huà)圖要求:先用鉛筆畫(huà)圖,然后用黑色水筆描畫(huà))

1)①畫(huà)出繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后的;

②連結(jié),請(qǐng)判斷是怎樣的三角形,并簡(jiǎn)要說(shuō)明理由.

2)畫(huà)出,使關(guān)于點(diǎn)成中心對(duì)稱;

3)請(qǐng)指出如何平移,使得能拼成一個(gè)長(zhǎng)方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將正方形紙片ABCD折疊,使點(diǎn)D落在邊AB上的D'處,點(diǎn)C落在C'處,若∠AD'M=50°,則∠MNC'的度數(shù)為(  )

A. 100°B. 110°C. 120°D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于某一函數(shù)給出如下定義:若存在實(shí)數(shù)p,當(dāng)其自變量的值為p時(shí),其函數(shù)值等于p,則稱p為這個(gè)函數(shù)的不變值.在函數(shù)存在不變值時(shí),該函數(shù)的最大不變值與最小不變值之差q稱為這個(gè)函數(shù)的不變長(zhǎng)度.特別地,當(dāng)函數(shù)只有一個(gè)不變值時(shí),其不變長(zhǎng)度q為零.例如:下圖中的函數(shù)有0,1兩個(gè)不變值,其不變長(zhǎng)度q等于1.

(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒(méi)有不變值?如果有,直接寫(xiě)出其不變長(zhǎng)度;

(2)函數(shù)y=2x2-bx.

①若其不變長(zhǎng)度為零,求b的值;

②若1≤b≤3,求其不變長(zhǎng)度q的取值范圍;

(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1G2兩部分組成,若其不變長(zhǎng)度q滿足0≤q≤3,m的取值范圍為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)E作EF∥AB,交BC于點(diǎn)F.

(1)求證:四邊形DBFE是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先填寫(xiě)表,通過(guò)觀察后再回答問(wèn)題:

a

……

0.0001

0.01

1

100

10000

……

……

0.01

x

1

y

100

……

(1)表格中,x=_________,y=_________

(2)從表格中探究a數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問(wèn)題:

①已知,則≈___________

②已知,若,用含m的代數(shù)式表示b,則b=___________

(3)試比較a的大。ㄖ苯訉(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地出租車計(jì)費(fèi)方法如圖,x(km)表示行駛里程,y(元)表示車費(fèi),請(qǐng)根據(jù)圖象解答下列問(wèn)題:

(1)該地出租車的起步價(jià)是 元;

(2)當(dāng)x>2時(shí),求y與x之間的函數(shù)關(guān)系式;

(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點(diǎn),將△BEC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)E落在CB的延長(zhǎng)線上點(diǎn)F處,點(diǎn)C落在點(diǎn)A處.再將線段AF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得線段FG,連結(jié)EF、CG.

(1)求證:EFCG;

(2)求點(diǎn)C、點(diǎn)A在旋轉(zhuǎn)過(guò)程中形成的、與線段CG所圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,B=C,AB=AC=12cm,BC=8cm,點(diǎn)DAB的中點(diǎn)如果點(diǎn)P在線段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA點(diǎn)CA點(diǎn)運(yùn)動(dòng)

1若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,BPDCQP是否全等?請(qǐng)說(shuō)明理由

2若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

同步練習(xí)冊(cè)答案