【題目】如圖,雙曲線經過四邊形OABC的頂點A、C,∠ABC90°,OC平分OAx軸正半軸的夾角,ABx軸,將ABC沿AC翻折后得到AB'C,B'點落在OA上,則四邊形OABC的面積是_____

【答案】3

【解析】

如圖,延長BAy軸于E,延長BCx軸于F,連接OC.,由題意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,設BC=CF=a,OF=BE=2b,首先證明AE=AB,再證明SABCSOCF,由此即可解決問題.

如圖,延長BAy軸于E,延長BCx軸于F,連接OC

由題意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,設BC=CF=aOF=BE=2b

SAOE=SOCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴SABCSOCF,SOCB'=SOFC=,∴S四邊形OABC=SOCB'+2SABC23

故答案為:3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明箱子中有2個紅球,1個黑球和1個白球,四個小球的形狀、大小完全相同.

(1)從中隨機摸取1個球,則摸到黑球的概率為

(2)小明和小貝做摸球游戲,游戲規(guī)則如下.

你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負責送貨,向東走了4千米到達小明家,繼續(xù)向東走了1.5千米到達小紅家,然后向西走了8.5千米到達小剛家,最后返回百貨大樓.

1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請你在數(shù)軸上標出小明、小紅、小剛家的位置.(小明家用點表示,小紅家用點表示,小剛家用點表示)

2)小明家與小剛家相距多遠?

3)若貨車每千米耗油1.5升,那么這輛貨車此次送貨共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在ABCD中,AB=10cm,BC=4cm,BCD=120°,CE平分∠BCDAB于點E.PA點出發(fā),沿AB方向以1cm/s的速度運動,連接CP,將PCE繞點C逆時針旋轉60°,使CECB重合,得到QCB,連接PQ.

(1)求證:PCQ是等邊三角形;

(2)如圖②,當點P在線段EB上運動時,PBQ的周長是否存在最小值?若存在,求

PBQ周長的最小值;若不存在,請說明理由;

(3)如圖③,當點P在射線AM上運動時,是否存在以點P、B、Q為頂點的直角三角形?

若存在,求出此時t的值;若不存在,請說明理由.

(1) (2)

(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c在數(shù)軸上的位置如圖所示,所對應的點分別為A、BC,

1)在數(shù)軸上表示2的點與表示5的點之間的距離為   ;

在數(shù)軸上表示﹣1的點與表示3的點之間的距離為   ;在數(shù)軸上表示﹣3的點與表示﹣5的點之間的距離為   ;由此可得點A、B之間的距離為   ,點BC之間的距離為   ,點AC之間的距離為   ;

2)化簡:﹣|a+b|+|cb||ba|

3)若c24,﹣b的倒數(shù)是它本身,a的絕對值的相反數(shù)是﹣2,求﹣a+2bc﹣(a4cb)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴重,交警對人民路某雷達測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進行整理(速度在3040含起點值30,不含終點值40),得到其頻數(shù)及頻率如表:

數(shù)據(jù)段

頻數(shù)

頻率

3040

10

0.05

4050

36

c

5060

a

0.39

6070

b

d

7080

20

0.10

總計

200

1

1)表中a、b、c、d分別為:a    b   ; c   ; d   

2)補全頻數(shù)分布直方圖;

3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:2420,1920,2223,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,A, B是直線l上的兩點,點B關于AD的對稱點為M,連接ADF.

1)若,如圖,

依題意補全圖形;

判斷MFFC的數(shù)量關系是 ;

2)如圖,當時,,CD的延長線相交于點E,取E的中點H,連結HF. 用等式表示線段CEAF的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點 E、F 分別在AB、CD上,EFBC,EFBD于點G.EG5,DF2,則圖中兩塊陰影部分的面積之和為______

查看答案和解析>>

同步練習冊答案