【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個圖形的周長為4,第2個圖形的周長為10,第3個圖形的周長為18,…,按此規(guī)律排列,回答下列問題:
(1)第5個圖形的周長為 ;
(2)第個圖形的周長為 ;
(3)若第個圖形的周長為180,則 .
【答案】(1)40;(2);(3)12
【解析】
(1)首先要理解圖形的變化規(guī)律是依次由邊長為1、2、3……的正方形拼接而成的,進(jìn)而可得到所組成的圖形的底邊長與右側(cè)的高的變化規(guī)律,進(jìn)而得解;
(2)根據(jù)(1)中得到的規(guī)律列式計算即可;
(3)利用(2)中的代數(shù)式列出方程求解即可.
(1)根據(jù)圖形的變化規(guī)律可知:
第1個圖形的周長為(1+1)×2=4,
第2個圖形的周長為(1+2+2)×2=10,
第3個圖形的周長為(1++2+3+3)×2=18,
∴第5個圖形的周長為:;
故答案為:40;
(2)由(1)可得:
第n個圖形的周長為:
故答案為:;
(3)若第n個圖形的周長為180,
則有:
解得:,(舍去)
故答案為:12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板放在第二象限,斜靠在兩坐標(biāo)軸上,點坐標(biāo)為,點的坐標(biāo)為,一次函數(shù)的圖象經(jīng)過點B、C,反比例函數(shù)的圖象也經(jīng)過點.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)觀察圖象直接寫出圖象在第二象限時,的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)滿足:對于自變量的取值范圍內(nèi)的任意,,
(1)若,都有,則稱是增函數(shù);
(2)若,都有,則稱是減函數(shù).
例題:證明函數(shù)是減函數(shù).
證明:設(shè),
.
∵,∴,.∴.即.
∴.∴函數(shù)()是減函數(shù).
根據(jù)以上材料,解答下面的問題:
己知函數(shù)(),
(1)計算:_______,_______;
(2)猜想:函數(shù)()是_______函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點P從點B出發(fā),沿BC以每秒2個單位長度的速度向終點C運動,同時點Q從點C出發(fā),沿折線以每秒5個單位長度的速度運動,到達(dá)點A時,點Q停止1秒,然后繼續(xù)運動.分別連結(jié)PQ、BQ.設(shè)的面積為S,點P的運動時間為秒.
(1)求點A與BC之間的距離.
(2)當(dāng)時,求的值.
(3)求S與之間的函數(shù)關(guān)系式.
(4)當(dāng)線段PQ與的某條邊垂直時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種高檔蔬菜“莼菜”,其進(jìn)價為16元/kg.經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(元/kg)的一次函數(shù),其售價、日銷售量對應(yīng)值如表:
售價(元/) | 20 | 30 | 40 |
日銷售量() | 80 | 60 | 40 |
(1)求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍);
(2)為多少時,當(dāng)天的銷售利潤 (元)最大?最大利潤為多少?
(3)由于產(chǎn)量日漸減少,該商品進(jìn)價提高了元/,物價部門規(guī)定該商品售價不得超過36元/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若日銷售最大利潤是864元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣3).
(1)求這個拋物線的解析式;
(2)拋物線與x軸的另一交點為C,拋物線的頂點為D,判斷△CBD的形狀;
(3)直線BN∥x軸,交拋物線于另一點N,點P是直線BN下方的拋物線上的一個動點(點P不與點B和點N重合),過點P作x軸的垂線,交直線BC于點Q,當(dāng)四邊形BPNQ的面積最大時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知函數(shù)的圖像和反比例函數(shù)的在第一象限交于A點,其中點A的橫坐標(biāo)是1.
(1)求反比例函數(shù)的解析式;
(2)把直線平移后與軸相交于點B,且,求平移后直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當(dāng)點E到達(dá)點C時停止運動,過點E作EF⊥AE交CD于點F,設(shè)點E運動路程為x,CF=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當(dāng)CF=時,點E的運動路程為或或,則下列判斷正確的是( 。
A. ①②都對 B. ①②都錯 C. ①對②錯 D. ①錯②對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com