【題目】如圖,在正方形ABCD中,EBC邊上的一點,BE4,EC8,將正方形邊AB沿AE折疊到AF,延長EFDCG,連接AG,現(xiàn)在有如下四個結(jié)論:①∠EAG45°;②FGFC;③FCAG;④SGFC14.其中結(jié)論正確的序號是_____

【答案】①③.

【解析】

證明∠GAF=GAD,∠EAB=EAF即可判斷①.證明DG=GC=FG,顯然GFC不是等邊三角形,可得判斷②.證明CFDFAGDF即可判斷③.證明FGEG=35,求出ECG的面積即可判斷④.

如圖,連接DF

∵四邊形ABCD是正方形,

ABADBCCD,∠ABE=∠BAD=∠ADG=∠ECG90°,

由翻折可知:ABAF,∠ABE=∠AFE=∠AFG90°BEEF4,∠BAE=∠EAF

∵∠AFG=∠ADG90°,AGAGADAF,

RtAGDRtAGFHL),

DGFG,∠GAF=∠GAD,設(shè)GDGFx,

∴∠EAG=∠EAF+GAF(∠BAF+DAF)=45°,故①正確,

RtECG中,∵EG2EC2+CG2

∴(4+x282+12x2,

x6

CDBCBE+EC12,

DGCG6

FGGC,

易知GFC不是等邊三角形,顯然FGFC,故②錯誤,

GFGDGC,

∴∠DFC90°,

CFDF

ADAF,GDGF

AGDF,

CFAG,故③正確,

SECG×6×824,FGFE6432

FGEG35,

SGFC×24,故④錯誤,

故答案為:①③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點,與x軸交于點C,過點AAHx軸于點H,點O是線段CH的中點,AC=4,cosACH=

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)在x軸上是否存在點P,使三角形PAC是等腰三角形?若存在,請求出P點坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程2x23x6=0有兩個實數(shù)根a,b,直線經(jīng)過點A(a+b,0)和點B(0ab),則直線l的函數(shù)表達式為(  )

A.y=2x3B.y=2x+3C.y=2x+3D.y=2x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是某品牌訂書機,其截面示意圖如圖2所示.訂書釘放置在軌槽CD內(nèi)的MD處,由連接彈簧的推動器MN推緊,連桿EP一端固定在壓柄CF上的點E處,另一端PDM上移動.當(dāng)點P與點M重合后,拉動壓柄CF會帶動推動器MN向點C移動.使用時,壓柄CF的端點F與出釘口D重合,紙張放置在底座AB的合適位置下壓完成裝訂(即點D與點H重合).已知CAAB,CA2cm,AH12cm,CE5cmEP6cm,MN2cm

1)求軌槽CD的長(結(jié)果精確到0.1);

2)裝入訂書釘需打開壓柄FC,拉動推動器MN向點C移動,當(dāng)∠FCD53°時,能否在ND處裝入一段長為2.5cm的訂書釘?(參考數(shù)據(jù):≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線過點


1)求出拋物線解析式的一般式;

2)拋物線上的動點在一次函數(shù)的圖象下方,求面積的最大值,并求出此時點的坐標(biāo);

3)若點軸上任意一點,在(2)的結(jié)論下,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AOBC于點O,OEAB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F

(1)求證:ACO的切線;

(2)若點FOA的中點,OE=3,求圖中陰影部分的面積;

(3)在(2)的條件下,點PBC邊上的動點,當(dāng)PE+PF取最小值時,直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根

(1)求實數(shù)k的取值范圍.

(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)接于,點,分別是,的中點,,,則的度數(shù)是_________

查看答案和解析>>

同步練習(xí)冊答案