如圖,直線EF與直線AB、CD分別相交于點G、H.若∠1=∠2=50°,GM平分∠HGB交直線CD于點M,則∠3=________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系內(nèi),Rt△ABC的直角頂點C(0,數(shù)學公式)在y軸的正半軸上,A、B是x軸上是兩點,且OA:OB=3:1,以OA、OB為直徑的圓分別交AC于點E,交BC于點F.直線EF交OC于點Q.
(1)求過A、B、C三點的拋物線的解析式;
(2)請猜想:直線EF與兩圓有怎樣的位置關系并證明你的猜想;
(3)在△AOC中,設點M是AC邊上的一個動點,過M作MN∥AB交OC于點N.試問:在x軸上是否存在點P,使得△PMN是一個以MN為一直角邊的等腰直角三角形?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2004•襄陽)如圖,在平面直角坐標系內(nèi),Rt△ABC的直角頂點C(0,)在y軸的正半軸上,A、B是x軸上是兩點,且OA:OB=3:1,以OA、OB為直徑的圓分別交AC于點E,交BC于點F.直線EF交OC于點Q.
(1)求過A、B、C三點的拋物線的解析式;
(2)請猜想:直線EF與兩圓有怎樣的位置關系并證明你的猜想;
(3)在△AOC中,設點M是AC邊上的一個動點,過M作MN∥AB交OC于點N.試問:在x軸上是否存在點P,使得△PMN是一個以MN為一直角邊的等腰直角三角形?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年湖北省襄樊市中考數(shù)學試卷(解析版) 題型:解答題

(2004•襄陽)如圖,在平面直角坐標系內(nèi),Rt△ABC的直角頂點C(0,)在y軸的正半軸上,A、B是x軸上是兩點,且OA:OB=3:1,以OA、OB為直徑的圓分別交AC于點E,交BC于點F.直線EF交OC于點Q.
(1)求過A、B、C三點的拋物線的解析式;
(2)請猜想:直線EF與兩圓有怎樣的位置關系并證明你的猜想;
(3)在△AOC中,設點M是AC邊上的一個動點,過M作MN∥AB交OC于點N.試問:在x軸上是否存在點P,使得△PMN是一個以MN為一直角邊的等腰直角三角形?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,直線AB的解析式為()與x軸、y軸分別交于A、B兩點,∠ABO=60°.經(jīng)過A、O兩點的⊙O1與x軸的負半軸交于點C,與直線AB切于點A.

⑴求C點的坐標;

⑵如圖②,過作直線EF∥y軸,在直線EF上是否存在一點D,使得△DAB的周長最短,若存在,求出D點坐標,不存在,說明理由;

 


⑶在⑵的條件下,連接與⊙交于點G,點P為劣弧GF上一個動點,連接GP與EF的延

長線交于H點,連接EP與OG交于I點,當P在劣弧GF運動時(不與G、F兩點重合),的值是否發(fā)生變化,若不變,求其值,若發(fā)生變化,求出其值的變化范圍.

查看答案和解析>>

同步練習冊答案