【題目】如圖,OM是∠AOC的平分線.ON∠BOC的平分線.

1)如圖1,當∠AOB=90°,∠BOC=60°時,∠MON的度數(shù)是多少?為什么?

2)如圖2,當∠AOB=70°,∠BOC=60°時,∠MON= (直接寫出結(jié)果)

3)如圖3,當∠AOB=α,∠BOC=β時,猜想:∠MON﹣∠CON= (直接寫出結(jié)果)

【答案】1)∠MON=45°;(235°;(3

【解析】

1)(2)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),∠MON=MOC-NOC求出即可;

3)表示出∠AOC度數(shù),表示出∠MOC和∠CON的度數(shù),MON﹣∠CON=MOC-2CON求出即可;

解:(1

OM是∠AOC的平分線,ON是∠BOC的平分線,

2

OM是∠AOC的平分線,ON是∠BOC的平分線,

故填:35°;

3

OM是∠AOC的平分線,ON是∠BOC的平分線,

.

故填:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級兩個班,各選派10名學生參加學校舉行的漢字聽寫大賽預賽,各參賽選手的成績?nèi)缦拢?/span>

(1)班:88,9192,93,93,9394,9898,100;

(2)班:8993,9393,95,96,96,9898,99

通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

(1)

100

m

93

93

12

(2)

99

95

n

p

8.4

(1)直接寫出表中m、n、p的值為:m=______,n=______,p=______

(2)依據(jù)數(shù)據(jù)分析表,有人說:最高分在(1)班,(1)班的成績比(2)班好.但也有人說(2)班的成績要好.請給出兩條支持九(2)班成績更好的理由;

(3)學校確定了一個標準成績,等于或大于這個成績的學生被評定為優(yōu)秀等級,如果九(2)班有一半的學生能夠達到優(yōu)秀等級,你認為標準成績應定為______分,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.

(1)求經(jīng)過B、E、C三點的拋物線的解析式;

(2)判斷BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;

(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,七(2)班的張明、王強等同學隨家長一同到某公園游玩,下面是購買門票時,張明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

張明他們一共去了幾個成人,幾個學生?

請你幫助張明算一算,用哪種方式購票(團體購票還是非團體購票)更省錢?

說明理由.

正要購票時,張明發(fā)現(xiàn)七(3)班的張小毛等15名同學和他們的2名家長共17人也來購票,請你為他們設計出最省的購票方案,并求出此時的購票費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學舉辦校園好聲音朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學校決賽兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示:

1)根據(jù)所給信息填寫表格;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

七年級

85

八年級

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,E,F(xiàn)分別在邊AD,AB上,連接CE,CF,且滿足∠DCE=∠BCF,BF=DE,∠A=60°,連接EF.

(1)若EF=2,求AEF的面積;

(2)如圖2,取CE的中點P,連接DP,PF,DF,求證:DP⊥PF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是邊長為1的正方形ABCD的對角線BD上的一點,且BE=BA,PCE上任意一點,PQBC于點Q,PRBE于點R.則:(1DE=__;(2PQ+PR=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點,與x軸交于點C,過點AAHx軸于點H,點O是線段CH的中點,AC=4,cosACH=

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)在x軸上是否存在點P,使三角形PAC是等腰三角形?若存在,請求出P點坐標;不存在,請說明理由.

查看答案和解析>>

同步練習冊答案