【題目】某商店經(jīng)銷(xiāo)一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷(xiāo)售量y個(gè))與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷(xiāo)售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門(mén)規(guī)定這種健身球的銷(xiāo)售單價(jià)不高于28元,該商店銷(xiāo)售這種健身球每天要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

【答案】(1)w=﹣2x2+120x﹣1600;(2)銷(xiāo)售單價(jià)定為30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)200元;(3)25

【解析】試題分析:(1)用每件的利潤(rùn)乘以銷(xiāo)售量即可得到每天的銷(xiāo)售利潤(rùn),即然后化為一般式即可;
(2)把(1)中的解析式進(jìn)行配方得到頂點(diǎn)式 然后根據(jù)二次函數(shù)的最值問(wèn)題求解;
(3)求函數(shù)值為150所對(duì)應(yīng)的自變量的值,即解方程然后利用銷(xiāo)售價(jià)不高于每件28元確定的值.

試題解析:(1)根據(jù)題意可得:,

,

,

之間的函數(shù)關(guān)系為:;

(2)根據(jù)題意可得:,

∴當(dāng)時(shí),有最大值,最大值為200.

答:銷(xiāo)售單價(jià)定為30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)200.

(3)當(dāng)時(shí),可得方程.

解得

,不符合題意,應(yīng)舍去.

答:該商店銷(xiāo)售這種健身球每天想要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)定為25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

1

2)(+6-+12++9.6)-+7.6)

3×

4)(×(60 )

5)(2)-(+10)+(-8)-(+3)

6)﹣14﹣(10.5××[1﹣(﹣22];

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)價(jià)為每件40元的某商品,售價(jià)為每件50元時(shí),每星期可賣(mài)出500件,市場(chǎng)調(diào)查反映:如果每件的售價(jià)每降價(jià)1元,每星期可多賣(mài)出100件,但售價(jià)不能低于每件42元,且每星期至少要銷(xiāo)售800件.設(shè)每件降價(jià)xx為正整數(shù)),每星期的利潤(rùn)為y元.

1)求yx的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

2)若某星期的利潤(rùn)為5600元,此利潤(rùn)是否是該星期的最大利潤(rùn)?說(shuō)明理由.

3)直接寫(xiě)出售價(jià)為多少時(shí),每星期的利潤(rùn)不低于5000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,E、F分別為BCCD邊上的兩個(gè)動(dòng)點(diǎn),∠EAF45°,下列幾個(gè)結(jié)論中:①EFBEDF;②MN2BM2DN2;③FA平分∠DFE;④連接MF,則AMF為等腰直角三角形;⑤∠AMN=∠AFE 其中一定成立的結(jié)論有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,BC是直徑,O的切線PACB的延長(zhǎng)線于點(diǎn)POEACAB于點(diǎn)F,PA于點(diǎn)E,連接BE

1)判斷BEO的位置關(guān)系并說(shuō)明理由;

2)若O的半徑為4,BE=3,AB的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在長(zhǎng)方形ABCD,AB=CD=8cm,AD=BC=6cm,點(diǎn)EDC邊上一點(diǎn),CE=1cm,動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿折線A-D-Eacm/s的速度向終點(diǎn)E運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,已知a是方程的解.

(1)a的值;

(2)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,請(qǐng)用t的式子表示APC的面積;

(3)在點(diǎn)P運(yùn)動(dòng)的同時(shí),有一動(dòng)點(diǎn)QC點(diǎn)出發(fā),沿折線C-D-A1cm/s的速度向終點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中,一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)繼續(xù)向終點(diǎn)運(yùn)動(dòng),當(dāng)APCAQC的面積相差6平方厘米時(shí),t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在已知的平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,若A,B兩點(diǎn)的坐標(biāo)分別是A(-1,0),B(0,3).

(1)將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫(huà)出△A1B1C1;

(2)以點(diǎn)O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫(huà)出△A2B2C2,并直接填寫(xiě)△A2B2C2的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

1637 年笛卡兒(RDescartes,1596 1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個(gè) 2 次方程求解,并最早給出因式分解定理.

他認(rèn)為,若一個(gè)高于二次的關(guān)于 x 的多項(xiàng)式能被 () 整除,則其一定可以分解為 () 與另外一個(gè)整式的乘積,而且令這個(gè)多項(xiàng)式的值為 0 時(shí), x = a 是關(guān)于 x 的這個(gè)方程的一個(gè)根.

例如:多項(xiàng)式 可以分解為 () 與另外一個(gè)整式 M 的乘積,即

時(shí),可知 x =1 為該方程的一個(gè)根.

關(guān)于笛卡爾的待定系數(shù)法原理,舉例說(shuō)明如下: 分解因式:

觀察知,顯然 x=1 時(shí),原式 = 0 ,因此原式可分解為 () 與另一個(gè)整式的積.

令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而

此時(shí),不難發(fā)現(xiàn) x= 1 是方程 的一個(gè)根.

根據(jù)以上材料,理解并運(yùn)用材料提供的方法,解答以下問(wèn)題:

1)若 是多項(xiàng)式 的因式,求 a 的值并將多項(xiàng)式分解因式;

2)若多項(xiàng)式 含有因式 ,求a+ b 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案