【題目】某商店經(jīng)銷(xiāo)一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門(mén)規(guī)定這種健身球的銷(xiāo)售單價(jià)不高于28元,該商店銷(xiāo)售這種健身球每天要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
【答案】(1)w=﹣2x2+120x﹣1600;(2)銷(xiāo)售單價(jià)定為30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)200元;(3)25元
【解析】試題分析:(1)用每件的利潤(rùn)乘以銷(xiāo)售量即可得到每天的銷(xiāo)售利潤(rùn),即然后化為一般式即可;
(2)把(1)中的解析式進(jìn)行配方得到頂點(diǎn)式 然后根據(jù)二次函數(shù)的最值問(wèn)題求解;
(3)求函數(shù)值為150所對(duì)應(yīng)的自變量的值,即解方程然后利用銷(xiāo)售價(jià)不高于每件28元確定的值.
試題解析:(1)根據(jù)題意可得:,
,
,
與之間的函數(shù)關(guān)系為:;
(2)根據(jù)題意可得:,
∵,∴當(dāng)時(shí),有最大值,最大值為200.
答:銷(xiāo)售單價(jià)定為30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)200元.
(3)當(dāng)時(shí),可得方程.
解得,
∵,∴不符合題意,應(yīng)舍去.
答:該商店銷(xiāo)售這種健身球每天想要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)定為25元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)
(2)(+6)-(+12)+(+9.6)-(+7.6)
(3)5×―×
(4)()×(-60 )
(5)(2)-(+10)+(-8)-(+3)
(6)﹣14﹣(1﹣0.5)××[1﹣(﹣2)2];
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】進(jìn)價(jià)為每件40元的某商品,售價(jià)為每件50元時(shí),每星期可賣(mài)出500件,市場(chǎng)調(diào)查反映:如果每件的售價(jià)每降價(jià)1元,每星期可多賣(mài)出100件,但售價(jià)不能低于每件42元,且每星期至少要銷(xiāo)售800件.設(shè)每件降價(jià)x元 (x為正整數(shù)),每星期的利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;
(2)若某星期的利潤(rùn)為5600元,此利潤(rùn)是否是該星期的最大利潤(rùn)?說(shuō)明理由.
(3)直接寫(xiě)出售價(jià)為多少時(shí),每星期的利潤(rùn)不低于5000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,E、F分別為BC、CD邊上的兩個(gè)動(dòng)點(diǎn),∠EAF=45°,下列幾個(gè)結(jié)論中:①EF=BE+DF;②MN2=BM2+DN2;③FA平分∠DFE;④連接MF,則△AMF為等腰直角三角形;⑤∠AMN=∠AFE. 其中一定成立的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,BC是直徑,⊙O的切線PA交CB的延長(zhǎng)線于點(diǎn)P,OE∥AC交AB于點(diǎn)F,交PA于點(diǎn)E,連接BE.
(1)判斷BE與⊙O的位置關(guān)系并說(shuō)明理由;
(2)若⊙O的半徑為4,BE=3,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在長(zhǎng)方形ABCD中,AB=CD=8cm,AD=BC=6cm,點(diǎn)E是DC邊上一點(diǎn),且CE=1cm,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿折線A-D-E以acm/s的速度向終點(diǎn)E運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,已知a是方程的解.
(1)求a的值;
(2)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,請(qǐng)用t的式子表示△APC的面積;
(3)在點(diǎn)P運(yùn)動(dòng)的同時(shí),有一動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),沿折線C-D-A以1cm/s的速度向終點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中,一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)繼續(xù)向終點(diǎn)運(yùn)動(dòng),當(dāng)△APC和△AQC的面積相差6平方厘米時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,若A,B兩點(diǎn)的坐標(biāo)分別是A(-1,0),B(0,3).
(1)將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫(huà)出△A1B1C1;
(2)以點(diǎn)O為位似中心,與△ABC位似的△A2B2C2滿足A2B2:AB=2:1,請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫(huà)出△A2B2C2,并直接填寫(xiě)△A2B2C2的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
1637 年笛卡兒(R.Descartes,1596 1650)在其《幾何學(xué)》中,首次應(yīng)用待定系數(shù)法將 4 次方程分解為兩個(gè) 2 次方程求解,并最早給出因式分解定理.
他認(rèn)為,若一個(gè)高于二次的關(guān)于 x 的多項(xiàng)式能被 () 整除,則其一定可以分解為 () 與另外一個(gè)整式的乘積,而且令這個(gè)多項(xiàng)式的值為 0 時(shí), x = a 是關(guān)于 x 的這個(gè)方程的一個(gè)根.
例如:多項(xiàng)式 可以分解為 () 與另外一個(gè)整式 M 的乘積,即
令時(shí),可知 x =1 為該方程的一個(gè)根.
關(guān)于笛卡爾的“待定系數(shù)法”原理,舉例說(shuō)明如下: 分解因式:
觀察知,顯然 x=1 時(shí),原式 = 0 ,因此原式可分解為 () 與另一個(gè)整式的積.
令:,則=,因等式兩邊 x 同次冪的系數(shù)相等,則有:,得,從而
此時(shí),不難發(fā)現(xiàn) x= 1 是方程 的一個(gè)根.
根據(jù)以上材料,理解并運(yùn)用材料提供的方法,解答以下問(wèn)題:
(1)若 是多項(xiàng)式 的因式,求 a 的值并將多項(xiàng)式分解因式;
(2)若多項(xiàng)式 含有因式及 ,求a+ b 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com