【題目】如圖,二次函數(shù)的圖象與軸相交于點(diǎn),與軸相交于點(diǎn)

求該函數(shù)的表達(dá)式;

點(diǎn)為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過(guò)點(diǎn),垂足為點(diǎn),連接

求線段的最大值;

若以點(diǎn)、為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo).

【答案】 滿足條件的點(diǎn)坐標(biāo)為

【解析】

(1)根據(jù)待定系數(shù)法求函數(shù)關(guān)系式;(2)根據(jù)相似三角形列出比例式表示PQ.

拋物線解析式為,

,

,解得

所以拋物線解析式為;

①作軸于,交,如圖,

,

當(dāng)時(shí),,則,

設(shè)直線的解析式為,

,解得,

∴直線的解析式為,

設(shè),則

,

,

,即

,

∴當(dāng)時(shí),線段的最大值為;

②當(dāng)時(shí),,

此時(shí),點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,

∴此時(shí)點(diǎn)坐標(biāo)為;

當(dāng)時(shí),

,

,

為等腰三角形,

,

解得,

此時(shí)點(diǎn)坐標(biāo)為,

綜上所述,滿足條件的點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的方格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).

(1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1;

(2)畫(huà)出與△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;

(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫(xiě)出P2的坐標(biāo)為    ;

(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來(lái)),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的長(zhǎng)方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△ABC′;

2)計(jì)算△ABC的面積;

3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),大孔的水面寬度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O為坐標(biāo)原點(diǎn),四邊形OABC為長(zhǎng)方形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng).

(1)當(dāng)△ODP是等腰三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);

(2)求△ODP周長(zhǎng)的最小值.(要有適當(dāng)?shù)膱D形和說(shuō)明過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,CE⊥AD于點(diǎn)E,且CB=CE,點(diǎn)F為CD邊上的一點(diǎn),CB=CF,連接BF交CE于點(diǎn)G.

(1)若∠D=60°,CF=2,求CG的長(zhǎng)度;

(2)求證:AB=ED+CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=ACDACABC的一個(gè)外角

實(shí)踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母保留作圖痕跡,不寫(xiě)作法

1DAC的平分線AM;

2作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

同步練習(xí)冊(cè)答案