【題目】作圖題:(不要求寫作法)如圖,在 10×10 的方格紙中,有一個(gè)格點(diǎn)四邊形 ABCD(即四邊形的頂點(diǎn)都在格點(diǎn)上)。①在給出的方格紙中,畫出四邊形 ABCD 向下平移 5 格后的四邊形 ABCD;②在給出的方格紙中,畫出四邊形 ABCD 關(guān)于直線 l 對(duì)稱的圖形 ABCD.

【答案】見解析

【解析】

在平移時(shí)要注意平移的方向和平移的距離.確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);確定圖形中的關(guān)鍵點(diǎn);利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.軸對(duì)稱圖形對(duì)應(yīng)點(diǎn)到對(duì)稱軸的距離相等,利用此性質(zhì)找對(duì)應(yīng)點(diǎn),順次連接即可.

作圖如圖:

畫出對(duì)應(yīng)點(diǎn)的位置,連接即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)五角星.

1)計(jì)算:∠A+B+C+D+E的度數(shù).

2)當(dāng)BE向上移動(dòng),過點(diǎn)A時(shí),如圖2,五個(gè)角的和(即∠CAD+B+C+D+E)有無變化?說明你的理由.

3)如圖3,把圖2中的點(diǎn)C向上移到BD上時(shí),五個(gè)角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有無變化?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)環(huán)保意識(shí),某社區(qū)計(jì)劃開展一次“減碳環(huán)保,減少用車時(shí)間”的宣傳活動(dòng),對(duì)部分家庭五月份的平均每天用車時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查了多少個(gè)家庭?

(2)將圖中的條形圖補(bǔ)充完整,直接寫出用車時(shí)間的中位數(shù)落在哪個(gè)時(shí)間段內(nèi);

(3)求用車時(shí)間在1~1.5小時(shí)的部分對(duì)應(yīng)的扇形圓心角的度數(shù);

(4)若該社區(qū)有車家庭有1600個(gè),請(qǐng)你估計(jì)該社區(qū)用車時(shí)間不超過1.5小時(shí)的約有多少個(gè)家庭?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC是等邊三角形,四邊形ACFE是平行四邊形,AEBC

(1)如圖①,求證:ACFE是菱形;

(2)如圖②,點(diǎn)D是△ABC內(nèi)一點(diǎn),且∠ADB90°,∠EDC90°,∠ABD=∠ACE.求證:ACFE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC BDE 都是等邊三角形,A、BD 三點(diǎn)共線.下列結(jié)論:①ABCD;②BFBG;③HB 平分∠AHD;④∠AHC60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件;

(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點(diǎn)F

1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);

2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).

①AE=EF是否一定成立?說出你的理由;

在如圖2所示的直角坐標(biāo)系中拋物線y=ax2+x+c經(jīng)過A、D兩點(diǎn),當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在此拋物線上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1;

2)用公式法解:4x2312x;

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,一次函數(shù) )和二次函數(shù) )的圖象可能為(

A. A B. B C. C D. D

查看答案和解析>>

同步練習(xí)冊(cè)答案