【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B在x軸的正半軸上,OB=,AB⊥OB,∠AOB=30°.把△ABO繞點(diǎn)O逆時針旋轉(zhuǎn)150°后得到△A1B1O,則點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)為___.
【答案】(﹣2,0).
【解析】
利用∠AOB的余弦值可求出OA的長,根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA=OA1,∠BOA1=180°,可知點(diǎn)A1在x軸負(fù)半軸上,根據(jù)OA1的長即可得點(diǎn)A1坐標(biāo).
∵△ABO中,AB⊥OB,OB=,∠AOB=30°,
∴cos∠AOB=,
∴OA===2,
如圖,當(dāng)△ABO繞點(diǎn)O逆時針旋轉(zhuǎn)150°后得到△A1B1O,
∴∠AOA1=150°,OA1=OA=2,
∵∠AOB=30°,
∴∠BOA1=180°,
∴點(diǎn)A1在x軸負(fù)半軸上,
∴A1(﹣2,0),
故答案為:(﹣2,0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC中∠BAC的平分線,過A作AE⊥AD交BC的延長線于點(diǎn)E,M為DE的中點(diǎn).
(1)求證:ME2=MCMB;
(2)如果BA2=BDBE,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D是弧AE上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF·DB;
(3)在(2)的條件下,延長ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4π,BC=3π,半徑是2的⊙O從與AC相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時針方向沿三角形滾動,又回到與AC相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了( )
A.2周B.3周C.4周D.5周
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:若存在實(shí)數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)和是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;
(3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時,滿足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,點(diǎn)E在弦AB所對的優(yōu)弧上,且為半圓,C是上的動點(diǎn),連接CA、CB,已知AB=4cm,設(shè)B、C間的距離為xcm,點(diǎn)C到弦AB所在直線的距離為y1cm,A、C兩點(diǎn)間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過程,請補(bǔ)充完整.
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 0.78 | 1.76 | 2.85 | 3.98 | 4.95 | 4.47 |
y2/cm | 4 | 4.69 | 5.26 | 5.96 | 5.94 | 4.47 |
(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn)(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:
①連接BE,則BE的長約為 cm.
②當(dāng)以A、B、C為頂點(diǎn)組成的三角形是直角三角形時,BC的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P是邊AD上的一點(diǎn),連接BP,CP過點(diǎn)B作射線交線段CP的延長線于點(diǎn)E,交AD邊于點(diǎn)M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)證明:△ABM∽△APB;
(2)當(dāng)AP=3時,求sin∠EBP的值;
(3)如果△EBC是以BC為底邊的等腰三角形,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°
(1)在BC邊上找一點(diǎn)P,作⊙P與AC,AB邊都相切,與AC的切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=4,AC=6,求第(1)題中所作圓的半徑;
(3)連接BQ,第(2)題中的條件不變,求cos∠CBQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).
(1)求一次函數(shù)和二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com