【題目】1)解方程

2)先化簡,再求值:,其中互為相反數(shù).

【答案】1x=;(2;

【解析】

1)把方程兩邊同時乘以最簡公分母x2-4,去分母得整式方程,解整式方程可求出x的值,把x的值代入最簡公分母檢驗即可得答案;

2)先把括號內(nèi)的分式通分,除式的分母因式分解,再根據(jù)分式除法法則化簡得出最簡結(jié)果,根據(jù)平方和絕對值的非負(fù)數(shù)性質(zhì)可求出a、b的值,代入化簡后的式子計算即可得答案.

1

方程兩邊同時乘以最簡公分母x2-4得:x(x+2)-(x2-4)=1

整理得:2x=-3,

解得:x=

檢驗:當(dāng)x=時,x2-4≠0,

x=是原分式方程的解.

2

=

=

=

互為相反數(shù),

+=0

a-3=0,b-1=0,

解得:a=3b=1,

當(dāng)a=3b=1時,原式===

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分∠BADCEABE,CFADF,且BCCD

1)求證:BCE≌△DCF;

2)若AB21,AD9,BCCD10,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)探究新知:

①如圖,已知ADBCADBC,點(diǎn)M,N是直線CD上任意兩點(diǎn).試判斷△ABM與△ABN的面積是否相等.

②如圖,已知ADBEADBE,ABCDEF,點(diǎn)M是直線CD上任一點(diǎn),點(diǎn)G是直線EF上任一點(diǎn).試判斷△ABM與△ABG的面積是否相等,并說明理由.

(2)結(jié)論應(yīng)用:

如圖③,拋物線的頂點(diǎn)為C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)D.試探究在拋物線上是否存在除點(diǎn)C以外的點(diǎn)E,使得△ADE與△ACD的面積相等?若存在,請求出此時點(diǎn)E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購是現(xiàn)在人們常用的購物方式,通常網(wǎng)購的商品為防止損壞會采用盒子進(jìn)行包裝,均是容積為立方分米無蓋的長方體盒子(如圖).

1)圖中盒子底面是正方形,盒子底面是長方形,盒子比盒子高6分米,兩個盒子都選用相同的材料制作成側(cè)面和底面,制作底面的材料1.5/平方分米,其中盒子底面制作費(fèi)用是盒子底面制作費(fèi)用的3倍,當(dāng)立方分米時,求盒子的高(溫馨提示:要求用列分式方程求解).

2)在(1)的條件下,已知盒子側(cè)面制作材料的費(fèi)用是0.5/平方分米,求制作一個盒子的制作費(fèi)用是多少元?

3)設(shè)的值為(2)中所求的一個盒子的制作費(fèi)用,請分解因式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)素質(zhì)教育要求,促進(jìn)學(xué)生全面發(fā)展,我市某中學(xué)2014年投資11萬元新增一批電腦,計劃以后每年以相同的增長率進(jìn)行投資,2016年投資18.59萬元.

(1)求該學(xué)校為新增電腦投資的年平均增長率;

(2)2014年到2016年,該中學(xué)三年為新增電腦共投資多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用 6000 元購進(jìn)一批襯衫,以 60 元/件的價格出售,很快售完,然后又用 13500元購進(jìn)同款襯衫,購進(jìn)數(shù)量是第一次的 2 倍,購進(jìn)的單價比上一次每件多 5 元,服裝店 仍按原售價 60 元/件出售,并且全部售完.

1)該服裝店第一次購進(jìn)襯衫多少件?

2)將該服裝店兩次購進(jìn)襯衫看作一筆生意,那么這筆生意是盈利還是虧損?求出盈利(或 虧損)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實(shí)數(shù)m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy,點(diǎn)A(0,6),點(diǎn)B(4,3),P是x軸上的一個動點(diǎn).作OQ⊥AP,垂足為點(diǎn)Q,連接QB,則AQB的面積的最大值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點(diǎn)E.

(1)求∠CBE的度數(shù);

(2)過點(diǎn)DDFBE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案