已知a,b,c是非負(fù)數(shù),且滿足a+b+c=30,3a+b-c=50.求S=5a+4b+2c的最大值和最小值.

答案:
解析:

解:

①+②得4a+2b=80

即b=40-2a③

將③代入①得c=a-10

由已知得 解得10≤a≤20

又S=5a+4b+2c=5a+4(40-2a)+2(a-10)=-a+140

∴當(dāng)a=10時(shí)S有最大值130

當(dāng)a=20時(shí),S有最小值為120


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知a,b,c都是非負(fù)整數(shù),且28a+30b+31c=365,求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x、y是非負(fù)實(shí)數(shù),x+2y-8=0,則xy的最大值是
8
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究題
如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中按a次冪從大到小排列的項(xiàng)的系數(shù).規(guī)定任何非零數(shù)的零次冪為1,如(a+b)0=1.例如,
(a+b)1=a+b展開式中的系數(shù)1、1恰好對應(yīng)圖中第二行的數(shù)字;
(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;
(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.
(1)請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

(2)類似地,請你探索并畫出(a-b)0,(a-b)1,(a-b)2,(a-b)3的展開式中按a次冪從大到小排列的項(xiàng)的系數(shù)對應(yīng)的三角形.
(3)探究解決問題:已知a+b=3,a2+b2=5,求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:69領(lǐng)航·單元同步訓(xùn)練 八年級(上冊) 數(shù)學(xué)(人教版) 題型:044

已知x,y,z是非負(fù)實(shí)數(shù),且滿足條件x+y+z=30,3x+y-z=50.求實(shí)數(shù)p=5x+4y+2z的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材新學(xué)案 數(shù)學(xué) 八年級上冊 題型:044

已知x,y,z是非負(fù)實(shí)數(shù),且滿足條件x+y+z=30,3x+y-z=50.求實(shí)數(shù)p=5x+4y+2z的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案