如圖1,在ABCD中,AEBCE,E恰為BC的中點(diǎn),AD=AE.
小題1:(1)如圖2,點(diǎn)P在線段BE上,作EFDP于點(diǎn)F,連結(jié)AF.
求證:;
小題2:(2)請(qǐng)你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EFDP于點(diǎn)F,連結(jié)AF,線段DF、EFAF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論.

小題1:(1)證明:∵在ABCD中,ADBC, AEBCE
AEADA,∠FPE=∠ADP
AD=AE,∠EAD=90°
∴將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG
∴△AEF≌△ADG,∠FAG="90°           " -------------1分
AG=AF,∠ADG=∠AEF
EFPDAEBC
∴∠AEF+∠PEF=90°,∠FPE+∠PEF=90°
∴∠AEF=∠FPE
∵∠ADG=∠AEF,∠FPE=∠ADP
∴∠ADG=∠ADP
∴點(diǎn)GPD上              ----------------------2分
AF=AG,∠FAG=90°
             ----------------------3分
FG=DF-DG=DF-EF
      ------------------------4分
小題2:(2)  (兩個(gè)圖各1分,結(jié)論1分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分).在四邊形ABCD中,∠B=∠D=90°,∠A=120°,AB=3,AD=6,延長DA,CB相交于點(diǎn)E.

小題1: ①.求Rt⊿DCE的面積;
小題2: ②.求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)C是線段AB上的一個(gè)動(dòng)點(diǎn),△ACD和△BCE是在AB同側(cè)的兩個(gè)等邊三角形,DM,EN分別是△ACD和△BCE的高,點(diǎn)C在線段AB上沿著從點(diǎn)A向點(diǎn)B的方向移動(dòng)(不與點(diǎn)A,B重合),連接DE,得到四邊形DMNE.這個(gè)四邊形的面積變化情況為(   )
A.逐漸增大B.逐漸減小
C.始終不變 D.先增大后變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
小題1:正方形FGCH的面積是         ;(用含a, b的式子表示)
小題2:類比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

小題3:聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

書籍是人類進(jìn)步的階梯!為愛護(hù)書一般都將書本用封皮包好.


小題1:現(xiàn)有精裝詞典長、寬、厚尺寸如圖(1)所示(單位:cm),若按圖(2)的包書方式,將封面和封底各折進(jìn)去3cm.試用含a、b、c的代數(shù)式分別表示詞典封皮(包書紙)的長是               cm,寬是___________cm;
小題2:在如圖(4)的矩形包書紙皮示意圖中,虛線為折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長即為折疊進(jìn)去的寬度.
(1)若有一數(shù)學(xué)課本長為26cm、寬為18.5cm、厚為1cm,小海寶用一張面積為1260 cm2的矩形紙包好了這本數(shù)學(xué)書,封皮展開后如圖(4)所示.若設(shè)正方形的邊長(即折疊的寬度)為x cm,則包書紙長為                 cm,寬為             cm(用含x的代數(shù)式表示).
(2)請(qǐng)幫小海寶列好方程,求出第(1)題中小正方形的邊長x cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,DB=DC,∠A=70°,CE⊥BD于E,則∠BCE=▲ °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連結(jié)等腰梯形各邊中點(diǎn)所得的四邊形一定是
A.等腰梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABCD中,AB=5,AD=8,DE平分∠ADC,則BE=    ▲   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形中,點(diǎn)F在邊BC上,E在邊BA的延長線上.
小題1:若按順時(shí)針方向旋轉(zhuǎn)后恰好與重合.則旋轉(zhuǎn)中心是點(diǎn)        ;
最少旋轉(zhuǎn)了         度;
小題2:在(1)的條件下,若,求四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案