我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱____ ___,___ ;(2分)
(2)如圖,已知格點(小正方形的頂點),,,請你直接寫出所有以格點為頂點,為勾股邊且對角線相等的勾股四邊形的頂點M的坐標。(3分)
(3)如圖,將繞頂點按順時針方向旋轉(zhuǎn),得到,連結(jié),.求證:,即四邊形是勾股四邊形.(4分)
(1)正方形、長方形、直角梯形.(任選兩個均可)(2)M(3,4)或M′(4,3)(3)證明見解析
【解析】(1)解:正方形、長方形、直角梯形.(任選兩個均可)
(2)解:答案如圖所示.M(3,4)或M′(4,3).
(3)證明:連接EC,
∵△ABC≌△DBE,
∴AC=DE,BC=BE,
∵∠CBE=60°,
∴EC=BC,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
∴DC2+EC2=DE2,
∴DC2+BC2=AC2.
即四邊形ABCD是勾股四邊形.
(1)只要四邊形中有一個角是直角,根據(jù)勾股定理就有兩直角邊平方的和等于斜邊的平方,即此四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,由此可知,正方形、長方形、直角梯形都是勾股四邊形.
(2)OM=AB知以格點為頂點的M共兩個:M(3,4)或M(4,3).
(3)欲證明DC2+BC2=AC2,只需證明∠DCE=90度.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com