【題目】對(duì)于任意實(shí)數(shù) , ,定義關(guān)于“ ”的一種運(yùn)算如下: .例如: ,
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.

【答案】
(1)

解:依題可得:3x=2×3-x=-2011.

∴x=2017.


(2)

解:依題可得:x3=2x-3<5.

∴x<4.

即x的取值范圍為x<4.


【解析】(1)根據(jù)題意列方程2×3-x=-2011求解即可.
(2)根據(jù)題意列不等式2x-3<5求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解一元一次方程的步驟和一元一次不等式的解法的相關(guān)知識(shí)可以得到問題的答案,需要掌握先去分母再括號(hào),移項(xiàng)變號(hào)要記牢.同類各項(xiàng)去合并,系數(shù)化“1”還沒好.求得未知須檢驗(yàn),回代值等才算了;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前中學(xué)生帶手機(jī)進(jìn)校園現(xiàn)象越來越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長(zhǎng);
(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)1萬名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度;
(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長(zhǎng)對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從這4位家長(zhǎng)中選2位家長(zhǎng)參加學(xué)校組織的家;顒(dòng),用列表法或畫樹狀圖的方法求選出的2人來自不同班級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,∠C=90°,AB 的中垂線交直線 BC 于 D,若∠BAD﹣∠DAC=22.5°,則∠B 的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x+5>0,則( )
A.x+1<0
B.x﹣1<0
C.<﹣1
D.﹣2x<12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)走基層欄目的一位記者乘汽車赴320km外的農(nóng)村采訪,全程的前一部分為高速公

路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y單位:km與時(shí)間x單位:h之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )

A.汽車在高速公路上的行駛速度為100km/h

B.鄉(xiāng)村公路總長(zhǎng)為90km

C.汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D.該記者在出發(fā)后5h到達(dá)采訪地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)P的坐標(biāo)為 ,直線y= x+b過點(diǎn)A,交y軸于點(diǎn)B,以點(diǎn)P為圓心,以PA為半徑的圓交x軸于點(diǎn)C.

(1)判斷點(diǎn)B是否在⊙P上?說明理由.
(2)求過A、B、C三點(diǎn)的拋物線的解析式;并求拋物線與⊙P另外一個(gè)交點(diǎn)為D的坐標(biāo).
(3)⊙P上是否存在一點(diǎn)Q,使以A、P、B、Q為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度數(shù).(寫出必要過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CAD=BAD,DEABE,點(diǎn)F在邊AC上,連接DF.

(1)求證:AC=AE;

(2)AC=8,AB=10,且△ABC的面積等于24,求DE的長(zhǎng);

(3)CF=BE,直接寫出線段AB,AF,EB的數(shù)量關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,CAB=500,C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案