【題目】紅星機(jī)械廠有煤80噸,每天需燒煤5噸,求工廠余煤量y()與燒煤天數(shù)x()之間的函數(shù)表達(dá)式,指出y是不是x的一次函數(shù),并求自變量x的取值范圍.

【答案】y=-5x80,函數(shù)屬于一次函數(shù),x的取值范圍為0≤x≤16.

【解析】

根據(jù)燃燒的速度乘以燃燒的時間,可得燃燒的煤的噸數(shù),根據(jù)總質(zhì)量減去燃燒的質(zhì)量,可得函數(shù)解析式,結(jié)合一次函數(shù)的定義來判定是否為一次函數(shù),根據(jù)y≥0x的取值范圍.

解 依題意得:y805x,即y=-5x80,該函數(shù)屬于一次函數(shù).

因?yàn)?/span>y≥0

所以-5x80≥0,

解得x≤16

又因?yàn)?/span>x≥0,

所以x的取值范圍為0≤x≤16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④PBF是等邊三角形.其中正確的是( )

A.①② B.②③ C.①③ D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某老師在試卷分析中說:參加這次考試的41位同學(xué)中,考121分的人數(shù)最多,雖然最高的同學(xué)獲得了滿分150分,但是十分遺憾最低的同學(xué)仍然只得了56分,其中分?jǐn)?shù)居第21位的同學(xué)獲得116分.這說明本次考試分?jǐn)?shù)的中位數(shù)是( )

A. 21 B. 103 C. 116 D. 121

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A、C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(6,4),E為AB的中點(diǎn),過點(diǎn)D(8,0)和點(diǎn)E的直線分別與BC、y軸交于點(diǎn)F、G.

(1)求直線DE的函數(shù)關(guān)系式;

(2)函數(shù)y=mx﹣2的圖象經(jīng)過點(diǎn)F且與x軸交于點(diǎn)H,求出點(diǎn)F的坐標(biāo)和m值;

(3)在(2)的條件下,求出四邊形OHFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個或乙種部件10個,2個甲種部件和3個乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個頂點(diǎn)分別是A﹣3,2),B0,4),C0,2).

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的A1B1C;平移ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的A2B2C2;

2)若將A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2;請直接寫出旋轉(zhuǎn)中心的坐標(biāo);

3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】56.32°____°_______″.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的方程ax2+bx+c﹣3=0的根的情況是(

A.有兩個不相等的實(shí)數(shù)根

B.有兩個異號實(shí)數(shù)根

C.有兩個相等實(shí)數(shù)根

D.無實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,可列出的方程是( 。

A. (3+x)(4-0.5x)=15 B. (x+3)(4+0.5x)=15

C. (x+4)(3-0.5x)=15 D. (x+1)(4-0.5x)=15

查看答案和解析>>

同步練習(xí)冊答案