【題目】小亮一家到桃林口水庫游玩.在岸邊碼頭P處,小亮和爸爸租船到庫區(qū)游玩,媽媽在岸邊碼頭P處觀看小亮與爸爸在水面劃船,小船從P處出發(fā),沿北偏東60°方向劃行,劃行速度是20/分鐘,劃行10分鐘后到A處,接著向正南方向劃行一段時(shí)間到B處,在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米?(精確到1m,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)

【答案】小亮與媽媽相距288米.

【解析】

PQABQ,根據(jù)已知,∠APQ=30°.解直角三角形求出PB即可.

PQABQ,根據(jù)已知,∠APQ=30°.

AQ=AP

AP=20×10=200

AQ=100

PQ=,

RtBPQ中,sinB=,

PB=100÷0.60≈288

∴此時(shí),小亮與媽媽相距288米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、DC邊上的點(diǎn),且AE=CF,
(1)求證:△ADE≌△CBF.
(2)若∠DEB=90°,求證:四邊形DEBF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(直接寫出結(jié)果):

(1)﹣2+5

(2)﹣17+(﹣3)

(3)(﹣10)﹣(-6)

(4)(﹣1)×(﹣12)

(5)﹣2×(﹣3)2

(6)﹣1÷(﹣5)

(7)﹣1200+(﹣1)200

(8)﹣0.125×(﹣2)3

(9)|﹣|

(10)(-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動,同時(shí),點(diǎn) Q 在線段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動.

若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點(diǎn) Q 的運(yùn)動速度與點(diǎn) P 的運(yùn)動速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來的運(yùn)動速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動,則經(jīng)過 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC=30m,從A點(diǎn)測得D點(diǎn)的俯角α為30°,測得C點(diǎn)的俯角β為60°,求這兩座建筑物的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關(guān)系?
經(jīng)過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小穎提出的問題,請你寫出結(jié)論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小華提出的問題,請你寫出結(jié)論,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).

(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯(cuò)角,一對同旁內(nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正比例函數(shù)y1=k1x的圖象與一個(gè)一次函數(shù)y2=k2x+b的圖象相交于點(diǎn)A(3,4),且一次函數(shù)y2的圖像與y軸相交于點(diǎn)B(0,—5),與x軸交于點(diǎn)C.

(1)判斷△AOB的形狀并說明理由;

(2)請寫出當(dāng)y1>y2時(shí)x的取值范圍;

(3)若將直線AB繞點(diǎn)A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;

(4)在x軸上求一點(diǎn)P使△POA為等腰三角形,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案