【題目】如圖,在邊長都為a的正方形內(nèi)分別排列著一些大小相等的圓.
(1)根據(jù)圖中的規(guī)律,第4個正方形內(nèi)圓的個數(shù)是 ,第n個正方形內(nèi)圓的個數(shù)是 .
(2)如果把正方形內(nèi)除去圓的部分都涂上陰影.
①用含a的代數(shù)式分別表示第1個正方形中和第3個正方形中陰影部分的面積.(結(jié)果保留π)
②若a=10,請直接寫出第2014個正方形中陰影部分的面積 .(結(jié)果保留π)
【答案】(1)16,n2個;(2)①第一個a2;第三個a2;②100﹣25π.
【解析】
(1)先根據(jù)題中已知的三個圖形找到其中的規(guī)律,即可得出答案;
(2)①利用陰影部分的面積等于正方形面積減去圓的面積即可得出答案;
②從①中找到陰影部分面積存在的規(guī)律,利用規(guī)律即可求出答案.
解:(1)圖形①圓的個數(shù)是1,
圖形②圓的個數(shù)是4,
圖形③圓的個數(shù)是9,
圖形④圓的個數(shù)是16,
…;
第n個正方形中圓的個數(shù)為n2個;
(2)①第一個S陰影=a2﹣π()2=a2;
第二個S陰影=a2﹣4π()2=a2;
第三個S陰影=a2﹣9π()2=a2;
②從以上計(jì)算看出三個圖形中陰影部分的面積均相等,與圓的個數(shù)無關(guān).
第n圖形中陰影部分的面積是S陰影=a2﹣n2π()2=a2;
當(dāng)a=10,第2014個陰影部分的面積為×102=100﹣25π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形OABC放置于平面直角坐標(biāo)系中,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸正半軸上,點(diǎn)C在y軸正半軸上,點(diǎn)B的坐標(biāo)為(6,3),點(diǎn)D是邊BC上的一動點(diǎn),連接OD,作點(diǎn)C關(guān)于直線OD的對稱點(diǎn)C′.
(1)若點(diǎn)C、C′、A在一直線上時,求點(diǎn)D的坐標(biāo);
(2)若點(diǎn)C′到矩形兩對邊所在直線距離之比為1:2時,求點(diǎn)C′的坐標(biāo);
(3)若連接BC′,則線段BC′的長度范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形 AEF 的頂點(diǎn) E 在等腰直角三角形 ABC 的邊 BC上.AB 的延長線交 EF 于 D 點(diǎn),其中∠AEF=∠ABC=90°.
(1)求證:
(2)若 E 為 BC 的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-2x+6與x軸交于點(diǎn)A,與直線y=x交于點(diǎn)B.
(1)點(diǎn)A坐標(biāo)為_____________.
(2)動點(diǎn)M從原點(diǎn)O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點(diǎn)A勻速運(yùn)動,過點(diǎn)M作MP⊥x軸交直線y=x于點(diǎn)P,然后以MP為直角邊向右作等腰直角△MPN.設(shè)運(yùn)動t秒時,ΔMPN與ΔOAB重疊部分的面積為S.求S與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蘋果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋果,每名工人只能做其中一項(xiàng)工作.蘋果的銷售方式有兩種:一種是可以直接出售,另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元,加工成罐頭出售每噸獲利10 000元.采摘的工人每人可以采摘蘋果0.4噸,加工罐頭的工人每人可加工蘋果0.3噸.采摘的蘋果一部分用于加工罐頭,其余直接出售.設(shè)有x名工人進(jìn)行蘋果采摘,罐頭和蘋果全部售出后,總利潤為y元.
(1)加工成罐頭的蘋果數(shù)量為 噸,直接出售的蘋果數(shù)量為 噸.(用含x的代數(shù)式表示)
(2)求y與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠以80元/箱的價(jià)格購進(jìn)60箱原材料,準(zhǔn)備由甲、乙兩車間全部用于生產(chǎn)A產(chǎn)品.甲車間用每箱原材料可生產(chǎn)出A產(chǎn)品12千克,需耗水4噸;乙車間通過節(jié)能改造,用每箱原材料可生產(chǎn)出的A產(chǎn)品比甲車間少2千克,但耗水量是甲車間的一半.已知A產(chǎn)品售價(jià)為30元/千克,水價(jià)為5元/噸.設(shè)甲車間用x箱原材料生產(chǎn)A產(chǎn)品.
(1)用含x的代數(shù)式表示:乙車間用________箱原材料生產(chǎn)A產(chǎn)品;
(2)求兩車間生產(chǎn)這批A產(chǎn)品的總耗水量;
(3)若兩車間生產(chǎn)這批產(chǎn)品的總耗水為200噸,則該廠如何分配兩車間的生產(chǎn)原材料?
(4)用含x的代數(shù)式表示這次生產(chǎn)所能獲取的利潤并化簡.(注:利潤=產(chǎn)品總售價(jià)-購買原材料成本-水費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,△ABC中,∠ACB=90°,AC=BC,MN是過點(diǎn)A的直線,DB⊥MN于點(diǎn)D,聯(lián)結(jié)CD.求證:BD+AD= CD.
小明的思考過程如下:要證BD+AD=CD,需要將BD,AD轉(zhuǎn)化到同一條直線上,可以在MN上截取AE=BD,并聯(lián)結(jié)EC,可證△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結(jié)論得證。
小聰?shù)乃伎歼^程如下:要證BD+AD=CD,需要構(gòu)造以CD為腰的等腰直角三角形,可以過點(diǎn)C作CE⊥CD交MN于點(diǎn)E,可證△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE為等腰直角三角形,可知DE=CD,于是結(jié)論得證。
請你參考小明或小聰?shù)乃伎歼^程解決下面的問題:
(1)將圖1中的直線MN繞點(diǎn)A旋轉(zhuǎn)到圖2和圖3的兩種位置時,其它條件不變,猜想BD,AD,CD之間的數(shù)量關(guān)系,并選擇其中一個圖形加以證明;
(2)在直線MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時,CD=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+與x軸、y軸分別相交于A,B兩點(diǎn),圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點(diǎn)O.若將⊙P沿x軸向左平移,當(dāng)⊙P與該直線相切時,點(diǎn)P坐標(biāo)為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com