【題目】當x=3、y=1時,代數(shù)式(x+y)(x-y)+y2的值是.
科目:初中數(shù)學 來源: 題型:
【題目】在電影票上,將7排6號“簡記作(7,6)”
(1)6排7號可表示為___________;(2) (8,6)表示的意義是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果將點B先向右移動4個單位長度,再向左移動6個單位長度后,這時點B表示的數(shù)是-6,則點B最初在數(shù)軸上表示的數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個最小方格的邊長均為1個單位,P1,P2,P3,…均在格點上,其順序按圖中“→”方向排列,如:點P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),….根據(jù)這個規(guī)律,求點P2018的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.易證:CE=CF.
(1)在圖1中,若G在AD上,且∠GCE=450.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖2,在四邊形ABCD中∠B=∠D=900,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α,∠ECG=β,試探索當α和β滿足什么關(guān)系時,圖1中GE,BE,GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標中,邊長為1的正方形OABC的兩頂點A,C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖3).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?若不變,請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小龍在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的家庭收入情況.他從中隨機調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表.
(2)補全頻數(shù)分布直方圖.
(3)繪制相應的頻數(shù)分布折線圖.
(4)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com