【題目】如圖,⊙O的半徑為(r0),若點(diǎn)P在射線OP上(P可以和射線端點(diǎn)重合),滿足OP′+OP2r,則稱點(diǎn)P是點(diǎn)P關(guān)于⊙O反演點(diǎn)

1)當(dāng)⊙O的半徑為8時(shí),

①若OP117,OP212OP34,則P1,P2P3中存在關(guān)于⊙O的反演點(diǎn)的是   

②點(diǎn)O關(guān)于⊙O反演點(diǎn)的集合是   ,若P關(guān)于⊙O反演點(diǎn)在⊙O內(nèi),則OP取值范圍是   ;

2)如圖2,△ABC中,∠ACB90°,ACBC12,⊙O的圓心在射線CB上運(yùn)動(dòng),半徑為1.若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙O反演點(diǎn)P在⊙O的內(nèi)部,求OC的取值范圍.

【答案】(1)P2,P3O為圓心,半徑為16的圓,8OP≤16;(2)當(dāng)122OC≤14時(shí),線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙O反演點(diǎn)P在⊙O的內(nèi)部.

【解析】

1)①、②運(yùn)用“反演點(diǎn)”的定義進(jìn)行解答即可;

2)需分兩種情形討論①當(dāng)點(diǎn)O在線段CB上時(shí),以O為圓心,半徑為2的圓與AB相切于H,確定OC的范圍即可;②當(dāng)點(diǎn)O在點(diǎn)B右側(cè)時(shí),確定OC的范圍即可;

解:(1根據(jù)O反演點(diǎn)的定義可知:當(dāng)0≤OP≤2r時(shí),點(diǎn)P存在關(guān)于O反演點(diǎn),

OP117,OP212,OP34,

P2,P3存在關(guān)于O反演點(diǎn),

故答案為P2P3

點(diǎn)O關(guān)于O反演點(diǎn)的集合是以O為圓心,半徑為16的圓,若P關(guān)于O反演點(diǎn)在O內(nèi),則OP取值范圍是

故答案為:以O為圓心,半徑為16的圓;8OP≤16

2當(dāng)點(diǎn)O在線段CB 上時(shí),以O為圓心,半徑為2的圓與AB相切于H,如圖,

這時(shí)OCCBOB122,此時(shí)線段AB上存在點(diǎn)P(即為點(diǎn)H),使得點(diǎn)P關(guān)于O反演點(diǎn)PO的內(nèi)部,即為圓心O,當(dāng)圖中點(diǎn)O向點(diǎn)B靠近時(shí),線段AB上必存在著點(diǎn)P,使得OP≤2,又OP+O P2,

O P1,即點(diǎn)P關(guān)于O反演點(diǎn)PO的內(nèi)部.

∴122OC≤12

當(dāng)點(diǎn)O在點(diǎn)B右側(cè)時(shí),

OPOB,又1OP≤2,

∴0OB≤2,

∴12OC≤14

綜上所述,當(dāng)122OC≤14時(shí),線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于O反演點(diǎn)PO的內(nèi)部.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A1,4),B42),C35)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).

1)請(qǐng)畫出將△ABC向下平移5個(gè)單位后得到的△A1B1C1;

2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,弦ABCDE,若已知AD=9,BC=12,則⊙O的半徑為(

A.5.5B.6C.7.5D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABC,DAC邊上一點(diǎn),且DADB,OAB的中點(diǎn),CEBCD的中線.

1)如圖①,連接OC,證明∠OCE=∠OAC;

2)如圖②,點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點(diǎn)N

①猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;

②若∠BAC30°,BCm,當(dāng)∠AON15°時(shí),請(qǐng)直接寫出線段ME的長(zhǎng)度(用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方程的解是______________;

(2)有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A,B都被分成了3等份,并在每一份內(nèi)均標(biāo)有數(shù)字,如圖所示,規(guī)則如下:①分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤A,B;②兩個(gè)轉(zhuǎn)盤停止后,觀察兩個(gè)指針?biāo)阜輧?nèi)的數(shù)字(若指針停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).用列表法(或樹狀圖)分別求出“兩個(gè)指針?biāo)傅臄?shù)字都是方程的解”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx1(k≠0)與反比例函數(shù)y (m≠0)的圖象有公共點(diǎn)A(1,2),直線lx軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別相交于點(diǎn)BC,連接AC.

(1)km的值;

(2)求點(diǎn)B的坐標(biāo);

(3)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡(jiǎn)稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡(jiǎn)稱香橙)現(xiàn)已是萬州柑橘發(fā)展的主推品種之一.某水果店老板在2017年11月份用15200元購進(jìn)了400千克紅桔和600千克香橙,已知香橙的每千克進(jìn)價(jià)比紅桔的每千克進(jìn)價(jià)2倍還多4元.

(1)求11月份這兩種水果的進(jìn)價(jià)分別為每千克多少元?

(2)時(shí)下正值柑橘銷售旺季,水果店老板決定在12月份繼續(xù)購進(jìn)這兩種水果,但進(jìn)入12月份,由于柑橘的大量上市,紅桔和香橙的進(jìn)價(jià)都有大幅下滑,紅桔每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,香橙每千克的進(jìn)價(jià)在11月份的基礎(chǔ)上下降了m%,由于紅桔和“玫瑰香橙”都深受庫區(qū)人民歡迎,實(shí)際水果店老板在12月份購進(jìn)的紅桔數(shù)量比11月份增加了m%,香橙購進(jìn)的數(shù)量比11月份增加了2m%,結(jié)果12月份所購進(jìn)的這兩種柑橘的總價(jià)與11月份所購進(jìn)的這兩種柑橘的總價(jià)相同,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線

1)如圖1,已知RtABC在正方形網(wǎng)格中,請(qǐng)你只用無刻度的直尺在網(wǎng)格中找到一點(diǎn)D,使四邊形ABCD是以AC相似對(duì)角線的四邊形(保留畫圖痕跡);

2)如圖2,在四邊形ABCD中,∠ABC70°,∠ADC145°,對(duì)角線BD平分∠ABC.求證:BD是四邊形ABCD相似對(duì)角線;

3)如圖3,已知FH是四邊形EFGH相似對(duì)角線,∠EFH=∠HFG30°,連接EG,若EFG的面積為2,求FH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,點(diǎn)D是斜邊AB的中點(diǎn),過點(diǎn)B、點(diǎn)C分別作BECD,CEBD.

1)求證:四邊形BECD是菱形;

2)若∠A=60°,AC=,求菱形BECD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案