【題目】如圖是某超市地下停車場入口的設(shè)計(jì)圖,請(qǐng)根據(jù)圖中數(shù)據(jù)計(jì)算CE的長度.(結(jié)果保留小數(shù)點(diǎn)后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)
【答案】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°
∴∠BCE=158°,
∴∠DCE=22°,
又∵tan∠BAE= ,
∴BD=ABtan∠BAE,
又∵cos∠BAE=cos∠DCE= ,
∴CE=CDcos∠BAE
=(BD﹣BC)cos∠BAE
=( ABtan∠BAE﹣BC)cos∠BAE
=(10×0.4040﹣0.5)×0.9272
≈3.28(m).
【解析】通過解Rt△BAD求得BD=ABtan∠BAE,通過解Rt△CED求得CE=CDcos∠BAE.然后把相關(guān)角度所對(duì)應(yīng)的函數(shù)值和相關(guān)的線段長度代入進(jìn)行求值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點(diǎn)P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點(diǎn)H,交BC的延長線于點(diǎn)F,連接AF交DH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,b),B(c,0),|a-3|+(2b-c)2+=0.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖,點(diǎn)C為x軸正半軸上一點(diǎn),且OC=OA,點(diǎn)D為OC的中點(diǎn),連AC,AD,請(qǐng)?zhí)剿?/span>AD+CD與AC之間的大小關(guān)系,并說明理由;
(3)如圖,過點(diǎn)A作AE⊥y軸于E,F(xiàn)為x軸負(fù)半軸上一動(dòng)點(diǎn)( 不與(-3,0)重合 ),G在EF延長線上,以EG為一邊作∠GEN=45°,過A作AM⊥x軸,交EN于點(diǎn)M,連FM,當(dāng)點(diǎn)F在x軸負(fù)半軸上移動(dòng)時(shí),式子的值是否發(fā)生變化?若變化,求出變化的范圍;若不變化,請(qǐng)求出其值并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°.如果將該三角形繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B1恰好落在邊BC的中點(diǎn)處.那么旋轉(zhuǎn)的角度等于( )
A.55°
B.60°
C.65°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AC=AB,點(diǎn)D為BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊作等腰直角△ADE,∠DAE=90°,連接CE.
(1)求證:△ABD≌△ACE.
(2)試猜想線段BD,CD,DE之間的等量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值
解:設(shè)另一個(gè)因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個(gè)因式是(2x3),a 的值是6.
請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),是兩個(gè)全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個(gè)三角形構(gòu)造成如圖(2)的圖形(B,E,C三點(diǎn)在一條直線上),利用這個(gè)圖形,求證:.
(2)當(dāng)a=1,b=2時(shí),將其中一個(gè)直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點(diǎn)與原點(diǎn)重合,兩直角邊a,b分別與x軸、y軸重合.請(qǐng)?jiān)谧鴺?biāo)軸上找一點(diǎn)C,使△ABC為等腰三角形.
①寫出一個(gè)滿足條件的在x軸上的點(diǎn)的坐標(biāo): ;
②寫出一個(gè)滿足條件的在y軸上的點(diǎn)的坐標(biāo): ;
③滿足條件的在y軸上的點(diǎn)共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個(gè)正方形,如果所剪得的兩個(gè)正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是( )
A.4:5
B.2:5
C.
:2
D.
:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點(diǎn)O作OE∥AC交半圓O于點(diǎn)E,過點(diǎn)E作EF⊥AB于F.若AC=2,則OF的長為( )
A.
B.
C.1
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com