【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點A1,﹣k+4).

1)試確定這兩個函數(shù)的表達(dá)式;

2)求△AOB的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

【答案】1y=y=x+1;(21.5;(3x1或﹣2x0

【解析】

1)首先把點A坐標(biāo)代入反比例函數(shù)的解析式中求出k的值,然后再把A點坐標(biāo)代入一次函數(shù)解析式中求出b的值;

2)兩個解析式聯(lián)立列出方程組,求得點B坐標(biāo)即可,在求出點C坐標(biāo),把AOB的面積轉(zhuǎn)化成A0C的面積+COB的面積即可;

3)當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時,直線在雙曲線的上方,直接根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值x的取值范圍即可.

解:(1)∵已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點A1,﹣k+4),∴﹣k+4=k,

解得:k=2,

故反比例函數(shù)的解析式為:y=

又知A12)在一次函數(shù)y=x+b的圖象上,

2=1+b

解得:b=1,

故一次函數(shù)的解析式為:y=x+1;

2)由題意得:

解得:x=21,

B(﹣2,﹣1),

y=0,得x+1=0

解得:x=1,

C(﹣1,0),

=×1×2+×1×1

=1+

=1.5;

3)由圖象可知,

當(dāng)一次函數(shù)的值大于反比例函數(shù)值時,

x的取值范圍是:x1或﹣2x0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某種汽車剎車后行駛的距離s(單位:m)關(guān)于行駛的時間t(單位:s)的函數(shù)關(guān)系式為s=15t-at2,且t=1時,s=9.

1)求st的函數(shù)關(guān)系式;

2)該汽車剎車后到停下來前進(jìn)了多遠(yuǎn)?

3)該汽車剎車后前進(jìn)6m時行駛了多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過坐標(biāo)原點O,與x軸交于另一點A,頂點為B.求:

1)拋物線的解析式;

2AOB的面積;

3)要使二次函數(shù)的圖象過點(10,0),應(yīng)把圖象沿x軸向右平移 個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知M是平行四邊形ABCDAB邊的三等分點,BDCM交于E,則陰影部分面積與平行四邊形面積比為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點D在線段AB上運動(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結(jié)論:

CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當(dāng)點DAB的中點時,△PDQ是等邊三角形,其中正確結(jié)論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一副眼鏡鏡片下半部分輪廓對應(yīng)的兩條拋物線關(guān)于y軸對稱.ABx軸,AB=4cm,最低點Cx軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點EF.過點EEGBC,交ABG,則圖中相似三角形有(

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程ax2+bx+c=0的兩個根;

(2)寫出不等式ax2+bx+c<0的解集;

(3)若方程ax2+bx+c+k=0有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案