【題目】如圖,在菱形ABCD中,∠B60°,AB2,把菱形ABCDBC的中點(diǎn)E順時針旋轉(zhuǎn)60°得到菱形A'B'C'D',其中點(diǎn)D的運(yùn)動路徑為,則圖中陰影部分的面積為__

【答案】

【解析】

先通過已知條件求出EA'DEA'D'以及扇形EDD'的面積,然后根據(jù)S陰影部分S扇形EDD'SEA'DSEA'D求出陰影部分面積.

解:如圖連接AE、DE、A'EDE,

∵菱形ABCD中,∠B60°,EBC中點(diǎn),

BEAB1,∠BAE30°,∠EAD90°,

∴∠EA'D90°,A'EAE,DE,DE'

∵旋轉(zhuǎn)角為60°,

∴∠DED'60°,BEB'60°BB'BEB'E1,

CECA'A'D1

SEA'DSECDCEAE,

SEA'D'EA'A'D',

S扇形EDD'

S陰影部分S扇形EDD'SEA'DSEA'D,

故答案為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c(a0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0)C(0,3)兩點(diǎn),與x軸交于點(diǎn)B

(1)若直線ymx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)P為拋物線的對稱軸x=﹣1上的一個動點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形ABCD沿DE折疊,使頂點(diǎn)A落在DC上的點(diǎn)A′處,然后將矩形展平,沿EF折疊,使頂點(diǎn)A落在折痕DE上的點(diǎn)G處.再將矩形ABCD沿CE折疊,此時頂點(diǎn)B恰好落在DE上的點(diǎn)H處.如圖2.

(1)求證:EG=CH;

(2)已知AF=,求AD和AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的,兩點(diǎn),過點(diǎn)軸于點(diǎn),,點(diǎn)的坐標(biāo)為

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)請根據(jù)圖象直接寫出的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的一邊ABx軸上,∠ABC=90°,點(diǎn)C4,8)在第一象限內(nèi),ACy軸交于點(diǎn)E,拋物線經(jīng)過A、B兩點(diǎn),與y軸交于點(diǎn)D0,﹣6).

1)請直接寫出拋物線的表達(dá)式;

2)點(diǎn)Px軸下方拋物線上一動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,PAC的面積為S,試求出Sm的函數(shù)關(guān)系式;

3)若點(diǎn)Mx軸正半軸上一點(diǎn)(不與點(diǎn)A重合),拋物線上是否存在點(diǎn)N,使∠CAN=MAN.若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點(diǎn)滾動到D點(diǎn)其圓心所經(jīng)過的路線長為___________cm

查看答案和解析>>

同步練習(xí)冊答案