(2007•朝陽(yáng)區(qū))已知:如圖,平行四邊形ABCD中,點(diǎn)E、F在AC上,______.在如下條件①AE=CF,②DF∥BE中,你認(rèn)為再添加哪一個(gè)條件,可證出BE=DF.把你選擇的條件添在題中的橫線上,并完成你的證明.
(只需添加一個(gè)條件即可)

【答案】分析:本題既可以證明△CDF≌△ABE,也可以證明△ADF≌△CBE,相比證明前者條件運(yùn)用更直接一些.
解答:解:DF∥BE.
證明:∵DF∥BE,
∴∠DFC=∠BEA.
∵四邊形ABCD是平行四邊形,
∴CD=AB,∠DCF=∠BAE.
∴△CDF≌△ABE(AAS).
∴BE=DF.
點(diǎn)評(píng):本題關(guān)鍵是利用平行四邊形的性質(zhì)結(jié)合添加的條件來(lái)證明三角形全等,從而得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(02)(解析版) 題型:選擇題

(2007•朝陽(yáng)區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點(diǎn)E由B沿折線BCD向點(diǎn)D移動(dòng),EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2007•朝陽(yáng)區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點(diǎn)E由B沿折線BCD向點(diǎn)D移動(dòng),EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(02)(解析版) 題型:選擇題

(2007•朝陽(yáng)區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點(diǎn)E由B沿折線BCD向點(diǎn)D移動(dòng),EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年北京市朝陽(yáng)區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•朝陽(yáng)區(qū))已知:如圖,點(diǎn)A、B分別在x軸、y軸上,以O(shè)A為直徑的⊙P交AB于點(diǎn)C,E為直徑OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合).EF⊥AB于點(diǎn)F,交y軸于點(diǎn)G.設(shè)點(diǎn)E的橫坐標(biāo)為x,△BGF的面積為y.
(1)求直線AB的解析式;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年北京市朝陽(yáng)區(qū)中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•朝陽(yáng)區(qū))如圖,直角梯形ABCD中,∠A=90°,∠B=45°,底邊AB=5,高AD=3,點(diǎn)E由B沿折線BCD向點(diǎn)D移動(dòng),EM⊥AB于M,EN⊥AD于N,設(shè)BM=x,矩形AMEN的面積為y,那么y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案