【題目】如圖ABC中,∠BAC=90°,AB=AC,BMAC邊的中線,ADBM,垂足為點E,BC于點D,AH平分∠BACBMN,交BCH,連接DM,則下列結論:①∠AMB=CMDHN=HDBN=AD④∠BNH=MDCMC=DC,正確的有( )

A.5B.4C.3D.2

【答案】B

【解析】

如圖,過點CKCCAAD的延長線于K,首先根據(jù)等腰直角三角形的性質(zhì)證明BHN≌△AHD,得到HNHD,BNAD,∠BNH=∠ADH=∠CDK,可判斷②③正確,然后利用同角的余角相等得到∠ABM=∠CAK,進而證明ABM≌△CAK,得到∠AMB=∠K,AMCKCM,然后證明CDM≌△CDK,得到∠CDK=∠CDM,∠K=∠CMD,等量代換可得∠AMB=∠CMD,∠BNH=∠MDC,可判斷①④正確,而條件不足,無法證明MC=DC,故⑤錯誤.

解:如圖,過點CKCCAAD的延長線于K

ABAC,∠BAC90°,AH平分∠BAC,

AHBC,BHCH,

AHBHCH,

ADBM,

∴∠BHN=∠AEN=∠AHD90°,

∵∠BNH=∠ANE,

∴∠HBN=∠DAH,

∴△BHN≌△AHDASA),

HNHD,BNAD,∠BNH=∠ADH=∠CDK,故②③正確,

∵∠BAM=∠ACK90°,

∴∠BAE+∠CAK90°,

∵∠BAE+∠ABM90°,

∴∠ABM=∠CAK,

ABAC,

∴△ABM≌△CAKASA),

∴∠AMB=∠K,AMCKCM,

∵∠DCM=∠DCK45°CDCD,

∴△CDM≌△CDKSAS),

∴∠CDK=∠CDM,∠K=∠CMD

∴∠AMB=∠CMD,∠BNH=∠MDC,故①④正確,

由于條件不足,無法證明MC=DC,故⑤錯誤,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AB的垂直平分線交ABN,交BC的延長線于M,∠A=40°.

⑴求∠NMB的大小;

⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB=

⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對這個問題規(guī)律性的認識是否需要加以修改?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點DAC邊上一點,以BD為邊作等邊△BDE, 連接CE.若CD1CE3,則BC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.

(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。

①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關系為AM=   DE;

②如圖3,當∠BAC=120°,ED=6時,AM的長為   

(2)猜想論證:

在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關系,并給予證明。

(3)拓展應用

如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題

①請在圖中標出點P的位置,并描述出該點的位置為

②直接寫出△PBC的“頂心距”的長為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠DEFAB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好治理河流水質(zhì),保護環(huán)境,某市治污公司決定購買10臺污水處理設備,現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如表:

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

220

180

經(jīng)調(diào)查:購買一臺A型設備比購買一臺B型設備多3萬元,購買2A型設備比購買3B型設備少3萬元.

1)求a,b的值;

2)經(jīng)預算:市治污公司購買污水處理設備的資金不超過100萬元,你認為該公司有哪幾種購買方案;

3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點為邊的中點,過點作射線,過點 于點,過點于點,連接并延長,交于點.

(1)求證:;

(2),求證: 為等邊三角形.

查看答案和解析>>

同步練習冊答案