【題目】如圖△ABC中,∠BAC=90°,AB=AC,BM是AC邊的中線,作AD⊥BM,垂足為點E,交BC于點D,且AH平分∠BAC交BM于N,交BC于H,連接DM,則下列結論:①∠AMB=∠CMD②HN=HD③BN=AD④∠BNH=∠MDC⑤MC=DC中,正確的有( )個
A.5個B.4個C.3個D.2個
【答案】B
【解析】
如圖,過點C作KC⊥CA交AD的延長線于K,首先根據(jù)等腰直角三角形的性質(zhì)證明△BHN≌△AHD,得到HN=HD,BN=AD,∠BNH=∠ADH=∠CDK,可判斷②③正確,然后利用同角的余角相等得到∠ABM=∠CAK,進而證明△ABM≌△CAK,得到∠AMB=∠K,AM=CK=CM,然后證明△CDM≌△CDK,得到∠CDK=∠CDM,∠K=∠CMD,等量代換可得∠AMB=∠CMD,∠BNH=∠MDC,可判斷①④正確,而條件不足,無法證明MC=DC,故⑤錯誤.
解:如圖,過點C作KC⊥CA交AD的延長線于K.
∵AB=AC,∠BAC=90°,AH平分∠BAC,
∴AH⊥BC,BH=CH,
∴AH=BH=CH,
∵AD⊥BM,
∴∠BHN=∠AEN=∠AHD=90°,
∵∠BNH=∠ANE,
∴∠HBN=∠DAH,
∴△BHN≌△AHD(ASA),
∴HN=HD,BN=AD,∠BNH=∠ADH=∠CDK,故②③正確,
∵∠BAM=∠ACK=90°,
∴∠BAE+∠CAK=90°,
∵∠BAE+∠ABM=90°,
∴∠ABM=∠CAK,
∵AB=AC,
∴△ABM≌△CAK(ASA),
∴∠AMB=∠K,AM=CK=CM,
∵∠DCM=∠DCK=45°,CD=CD,
∴△CDM≌△CDK(SAS),
∴∠CDK=∠CDM,∠K=∠CMD,
∴∠AMB=∠CMD,∠BNH=∠MDC,故①④正確,
由于條件不足,無法證明MC=DC,故⑤錯誤,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長線于M,∠A=40°.
⑴求∠NMB的大小;
⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB= ;
⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對這個問題規(guī)律性的認識是否需要加以修改?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質(zhì),決定開設以下體育課外活動項目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調(diào)查的學生共有 人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D為 AC邊上一點,以BD為邊作等邊△BDE, 連接CE.若CD=1,CE=3,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.
(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。
①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關系為AM= DE;
②如圖3,當∠BAC=120°,ED=6時,AM的長為 。
(2)猜想論證:
在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關系,并給予證明。
(3)拓展應用
如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題。
①請在圖中標出點P的位置,并描述出該點的位置為 ;
②直接寫出△PBC的“頂心距”的長為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好治理河流水質(zhì),保護環(huán)境,某市治污公司決定購買10臺污水處理設備,現(xiàn)有A,B兩種型號的設備,其中每臺的價格,月處理污水量如表:
A型 | B型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 220 | 180 |
經(jīng)調(diào)查:購買一臺A型設備比購買一臺B型設備多3萬元,購買2臺A型設備比購買3臺B型設備少3萬元.
(1)求a,b的值;
(2)經(jīng)預算:市治污公司購買污水處理設備的資金不超過100萬元,你認為該公司有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點為邊的中點,過點作射線,過點作 于點,過點作于點,連接并延長,交于點.
(1)求證:;
(2)若,求證: 為等邊三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com