【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

【答案】
(1)證明:連接AE,

∵AB是⊙O的直徑,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1= ∠CAB.

∵∠CBF= ∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直徑,

∴直線BF是⊙O的切線


(2)解:過點C作CG⊥AB于G.

∵sin∠CBF= ,∠1=∠CBF,

∴sin∠1= ,

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1=

∵AB=AC,∠AEB=90°,

∴BC=2BE=2 ,

在Rt△ABE中,由勾股定理得AE= =2 ,

∴sin∠2= = = ,cos∠2= = = ,

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= =


【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=k(x﹣k)與y=kx2 , y= (k≠0),在同一坐標(biāo)系上的圖象正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+ x+ 與x軸交于A,B兩點,與y軸交于點C.若點P是線段AC上方的拋物線上一動點,當(dāng)△ACP的面積取得最大值時,點P的坐標(biāo)是(

A.(4,3)
B.(5,
C.(4,
D.(5,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A,B分別在x軸,y軸上,點A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在x軸的非負(fù)半軸上運動,如果PQ= ,那么當(dāng)點P運動一周時,點Q運動的總路程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交與點A(﹣3,0),點B(9,0),與y軸交與點C,頂點為D,連接AD、DB,點P為線段AD上一動點.

(1)求拋物線的解析式;
(2)過點P作BD的平行線,交AB于點Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線對稱軸與x軸交與點G,E為OG的中點,F(xiàn)為點C關(guān)于DG對稱的對稱點,過點P分別作直線EF、DG的垂線,垂足為M、N,連接MN,當(dāng)△PMN為等腰三角形時,求此時EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為 的中點,P是直徑AB上一動點,則PC+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標(biāo)為A(﹣2,0).

(1)求拋物線的解析式及它的對稱軸方程;
(2)求點C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,請僅用無刻度的直尺,根據(jù)下列條件分別在圖1,圖2中畫出∠BAC的平分線(保留作圖痕跡,不寫作法).
(1)如圖1,P是BC邊的中點;
(2)如圖2,直線l與⊙O相切于點P,且l∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)

查看答案和解析>>

同步練習(xí)冊答案