如圖,平面直角坐標(biāo)系中,直線AB與軸,軸分別交于A(3,0),B(0,)兩點(diǎn), ,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的
三角形與△OBA相似.若存在,請求出所有符合條件
的點(diǎn)P的坐標(biāo);若不存在,請說明理由.(做出一種答案即可)
(1)直線AB解析式為:y=x+.
(2)方法一:設(shè)點(diǎn)C坐標(biāo)為(x,x+),那么OD=x,CD=x+.
∴==.
由題意: =,解得(舍去)
∴。茫ǎ,)
方法二:∵ ,=,∴.
由OA=OB,得∠BAO=30°,AD=CD.
∴ =CD×AD==.可得CD=.
∴ AD=1,OD=2.∴C(2,).
(3)當(dāng)∠OBP=Rt∠時(shí),如圖
①若△BOP∽△OBA,則∠BOP=∠BAO=30°,BP=OB=3,
∴(3,).
②若△BPO∽△OBA,則∠BPO=∠BAO=30°,OP=OB=1.
∴(1,).
當(dāng)∠OPB=Rt∠時(shí)
③ 過點(diǎn)P作OP⊥BC于點(diǎn)P(如圖),此時(shí)△PBO∽△OBA,∠BOP=∠BAO=30°
過點(diǎn)P作PM⊥OA于點(diǎn)M.
方法一: 在Rt△PBO中,BP=OB=,OP=BP=.
∵ 在Rt△PMO中,∠OPM=30°,
∴ OM=OP=;PM=OM=.∴(,).
方法二:設(shè)P(x ,x+),得OM=x ,PM=x+
由∠BOP=∠BAO,得∠POM=∠ABO.
∵tan∠POM=== ,tan∠ABOC==.
∴x+=x,解得x=.此時(shí),(,).
④若△POB∽△OBA(如圖),則∠OBP=∠BAO=30°,∠POM=30°.
∴ PM=OM=.
∴ (,)(由對稱性也可得到點(diǎn)的坐標(biāo)).
當(dāng)∠OPB=Rt∠時(shí),點(diǎn)P在x軸上,不符合要求.
綜合得,符合條件的點(diǎn)有四個(gè),分別是:
(3,),(1,),(,),(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、y=
| ||
B、y=
| ||
C、y=
| ||
D、y=
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com