【題目】已知四邊形ABCD是正方形,點(diǎn)E是邊BC上的任意一點(diǎn),AEEF,且直線EF交正方形外角的平分線CF于點(diǎn)F

1)如圖1,求證:AEEF;

2)如圖2,當(dāng)AB2,點(diǎn)E是邊BC的中點(diǎn)時(shí),請直接寫出FC的長.

【答案】(1)證明見解析;(2).

【解析】

1)截取BE=BM,連接EM,求出AM=EC,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可;

2)取AB中點(diǎn)M,連接EM,求出BM=BE,得出∠BME=45°,求出∠AME=ECF=135°,求出∠MAE=FEC,根據(jù)ASA推出AMEECF全等即可.

1)證明:如圖1,在AB上截取BMBE,連接ME

∵∠B90°,

∴∠BME=∠BEM45°

∴∠AME135°

∵CF是正方形的∠C外角的平分線,

∴∠ECF=90°+45°=135°

∴∠AME=∠ECF,

ABBC,BMBE,

AMEC

AEEF,

∴∠AEF=90°,

∴∠AEB+CEF=90°,

∵∠BAE+AEB=90°,

∴∠BAE=CEF,

AMEECF

,

∴△AME≌△ECFASA),

AEEF;

2)解:取AB中點(diǎn)M,連接EM,

ABBC,EBC中點(diǎn),MAB中點(diǎn),

AMCEBE,

∴∠BME=∠BME45°,

∴∠AME135°=∠ECF,

∵∠B90°,

∴∠BAE+AEB90°,

∵∠AEF90°

∴∠AEB+FEC90°,

∴∠BAE=∠FEC,

AMEECF

,

∴△AME≌△ECFASA),

EMCF,

AB2,點(diǎn)E是邊BC的中點(diǎn),

BMBE1

CFME

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直線與坐標(biāo)軸的交點(diǎn),直線過點(diǎn),與軸交于點(diǎn).

(1)三點(diǎn)的坐標(biāo).

(2)當(dāng)點(diǎn)的中點(diǎn)時(shí),在軸上找一點(diǎn),使的和最小,畫出點(diǎn)的位置,并求點(diǎn)的坐標(biāo).

(3)若點(diǎn)是折線上一動(dòng)點(diǎn),是否存在點(diǎn),使為直角三角形,若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

材料.若一元二次方程 的兩根為 ,,則

材料.已知實(shí)數(shù) , 滿足 ,且 ,求的值.

解:由題知 , 是方程 的兩個(gè)不相等的實(shí)數(shù)根,

根據(jù)材料 ,,

解決問題

(1)一元二次方程 的兩根為 ,,則 ,

(2)已知實(shí)數(shù) , 滿足 ,,且,求

的值.

(3)已知實(shí)數(shù) , 滿足 ,,且 ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處此時(shí)測得島礁P在北偏東30°方向,同時(shí)測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向。為了在臺風(fēng)到來之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行多少小時(shí)即可到達(dá)? (結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價(jià)格購進(jìn)800T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.

1)填表:(不需化簡)

2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,以ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.

(1)猜想BGEG的數(shù)量關(guān)系.并說明理由;

(2)延長DE,BA交于點(diǎn)H,其他條件不變,

①如圖2,若∠ADC=60°,求的值;

②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:梯形ABCD中,ADBCABC=90°,AD=4, AB=3,,在線段BC上取一點(diǎn)P(不與B、C重合),聯(lián)結(jié)DP,作射線PQDPPQ與直線AB交于點(diǎn)Q

(1)求出梯形ABCD的面積;

(2)若點(diǎn)Q在邊AB上,設(shè)CP=xAQ=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式,并寫出定義域.

(3)DPC是等腰三角形,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)都在格點(diǎn)上,且△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對稱,C點(diǎn)坐標(biāo)為(-2,1)。

(1)請直接寫出A1的坐標(biāo)   ;并畫出△A1B1C1

(2)P(a,b)是△ABC的AC邊上一點(diǎn),將△ABC平移后點(diǎn)P的對稱點(diǎn)P'(a+2,b﹣6),請畫出平移后的△A2B2C2

(3)若△A1B1C1和△A2B2C2關(guān)于某一點(diǎn)成中心對稱,則對稱中心的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,對角線相交于點(diǎn)分別是邊、的中點(diǎn).

1)求證:;

2)當(dāng)時(shí),求的長.

查看答案和解析>>

同步練習(xí)冊答案