如圖,在正方形ABCD中,對角線AC、BD交于點D,CE平分∠ACD,分別交AD、BD于E、G,EF∥AC交CD于F,連接OE下列結論:①EF=AE,②∠AOE=∠AEO,數(shù)學公式,④S△ACE=2S△DCE數(shù)學公式.其中正確的是


  1. A.
    ①③⑤
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ②③⑤
A
分析:正方形的四個角是直角,對角線垂直相等且平分每一組對角,以及對應線段成比例,勾股定理知識的應用.
解答:∵CE平分∠ACD,EF∥AC,
∴△CFE是等腰三角形,
∴CF=EF,
∵CF=AE,
∴EF=AE.(故①正確).
∵EF≠AO,
∴AE≠AO.(故②錯誤).

作CA的垂線MA和CE的延長線交于M點,
∵GO=MA,MA=AE,
∴GO=AE,(故③正確).

設GO=x,
∵GO=AE=EF,
∴EF=AE=2x,
∴DN=NE=EF=x,
∴DE=x,
∵EF∥AC,
=,
∴AC=2(+1)x,
∴OD=OA=(+1)x,
∴DG=DO-OG=x,
∵AB=DA=DE+AE=x+2x,
∴AB=(+1)DG.(故⑤正確).
=,
∴S△ACE=S△DCE
(故④錯誤).
故正確的為①③⑤.
故選A.
點評:本題考查了正方形的性質,平行線的性質以及勾股定理的知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案