【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若該二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.
【答案】
(1)解:∵b2﹣4ac=(2m+1)2﹣4( m2﹣1)
=(4m2+4m+1)﹣2m2+4
=2m2+4m+5
=2(m+1)2+3>0,
∴不論m取什么實(shí)數(shù),方程x2﹣(2m+1)+( m2﹣1)=0都有兩個(gè)不相等的實(shí)數(shù)根,
∴不論m取什么實(shí)數(shù),該二次函數(shù)圖象與x軸總有兩個(gè)交點(diǎn)
(2)解:∵該二次函數(shù)圖象經(jīng)過(guò)點(diǎn)(2m﹣2,﹣2m﹣1),
∴(2m﹣2)2﹣(2m+1)(2m﹣2)+( m2﹣1)=﹣2m﹣1,
解得:m1=2,m2=6,
當(dāng)m=2時(shí),該二次函數(shù)的表達(dá)式為:y=x2﹣5x+1,
當(dāng)m=6時(shí),該二次函數(shù)的表達(dá)式為:y=x2﹣13x+17
【解析】(1)首先求出b2﹣4ac的表達(dá)式,進(jìn)而利用配方法求出其符號(hào),進(jìn)而得出答案;(2)將已知點(diǎn)代入進(jìn)而求出m的值得出答案.
【考點(diǎn)精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點(diǎn),需要了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,﹣ ),C(2,0),其對(duì)稱軸與x軸交于點(diǎn)D
(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)
①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°, ③AC=BD,④AC⊥BD中,再選兩個(gè)做為補(bǔ)充,使ABCD變?yōu)檎叫危旅嫠姆N組
合,錯(cuò)誤的是( )
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B兩個(gè)轉(zhuǎn)盤分別被平均分成三個(gè)、四個(gè)扇形,分別轉(zhuǎn)動(dòng)A盤、B盤各一次.轉(zhuǎn)動(dòng)過(guò)程中,指針保持不動(dòng),如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗?qǐng)用列表或畫樹(shù)狀圖的方法,求兩個(gè)轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之積小于6的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是( )
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,BC=3,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=ax2+bx+2的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)若點(diǎn)Q(m,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),經(jīng)過(guò)點(diǎn)P分別作PD∥BQ交AQ于點(diǎn)D,PE∥AQ交BQ于點(diǎn)E. ①判斷四邊形PDQE的形狀;并說(shuō)明理由;
②連接DE,求出線段DE的長(zhǎng)度范圍;
③如圖2,在拋物線上是否存在一點(diǎn)F,使得以P、F、A、C為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)F和點(diǎn)P坐標(biāo);若不存在,說(shuō)明理由.
(3)當(dāng)r=2 時(shí),在P1(0,2),P2(﹣2,4),P3(4 ,2),P4(0,2﹣2 )中,求可以成為正方形ABCD的“等距圓”的圓心的坐標(biāo)?
(4)若點(diǎn)P坐標(biāo)為(﹣3,6),則當(dāng)⊙P的半徑r為多長(zhǎng)時(shí),⊙P是正方形ABCD的“等距圓”.試判斷此時(shí)⊙P與直線AC的位置關(guān)系?并說(shuō)明理由.
(5)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.若⊙P同時(shí)為上述兩個(gè)正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù) 的圖象相交于點(diǎn)B(m,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com