【題目】已知在△ABC中,AB=AC=8,∠BAC=30°.將△ABC繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B落在原△ABC的點(diǎn)C處,此時(shí)點(diǎn)C落在點(diǎn)D處.延長線段AD,交原△ABC的邊BC的延長線于點(diǎn)E,那么線段DE的長等于___________.
【答案】4-4.
【解析】
試題解析:作CH⊥AE于H,如圖,
∵AB=AC=8,
∴∠B=∠ACB=(180°-∠BAC)=(180°-30°)=75°,
∵△ABC繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B落在原△ABC的點(diǎn)C處,此時(shí)點(diǎn)C落在點(diǎn)D處,
∴AD=AB=8,∠CAD=∠BAC=30°,
∵∠ACB=∠CAD+∠E,
∴∠E=75°-30°=45°,
在Rt△ACH中,∵∠CAH=30°,
∴CH=AC=4,AH=CH=4,
∴DH=AD-AH=8-4,
在Rt△CEH中,∵∠E=45°,
∴EH=CH=4,
∴DE=EH-DH=4-(8-4)=4-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AO=BO,直線MN經(jīng)過點(diǎn)O, 且AC⊥MN于C,BD⊥MN于D
(1) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖①的位置時(shí),求證:CD=AC+BD;
(2) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖②的位置時(shí),求證:CD=AC-BD;
(3) 當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖③的位置時(shí),試問:CD、AC、BD有怎樣的等量關(guān)系?請寫出這個(gè)等量關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)(m,n),規(guī)定以下兩種變換:
(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)
按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2+5x+4的頂點(diǎn)為M,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn)。
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)求拋物線y=x2+5x+4關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的拋物線的函數(shù)表達(dá)式;
(3)設(shè)(2)中所求拋物線的頂點(diǎn)為M1,與x軸交于A1、B1兩點(diǎn),與y軸交于C1點(diǎn),在以A、B、C、M、A1、B1、C1、M1這八個(gè)點(diǎn)中的四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形中,求其中一個(gè)不是菱形的平行四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶種植一種經(jīng)濟(jì)作物,總用水量y(米3)與種植時(shí)間x(天)之間的函數(shù)關(guān)系式圖
(1)第20天的總用水量為多少米3?
(2)求y與x之間的函數(shù)關(guān)系式;
(3)種植時(shí)間為多少天時(shí),總用水量達(dá)到7000米3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正多邊形的每個(gè)外角都等于36°,那么它是( )
A. 正六邊形 B. 正八邊形 C. 正十邊形 D. 正十二邊形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com