【題目】如圖,在△ABC中,D是BC的中點,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求證:AD平分∠BAC;
(2)連接EF,求證:AD垂直平分EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 .
根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 .
應(yīng)用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角.
請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2,AD是BC邊上的中線,M是AD上的動點,E是邊AC的中點,則EM+CM的最小值為( )
A.1B.12 C.3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)產(chǎn)品店利用網(wǎng)絡(luò)將優(yōu)質(zhì)土特產(chǎn)銷往全國,其中銷售的核桃和花生這兩種商品的相關(guān)信息如下表:
商品 | 核桃 | 花生 |
規(guī)格 | 1 kg/袋 | 2 kg/袋 |
利潤 | 10元/袋 | 8元/袋 |
根據(jù)上表提供的信息,解答下列問題:
(1)已知今年上半年,該店銷售上表規(guī)格的核桃和花生共3000kg,獲得利潤21000元,求上半年該店銷售這種規(guī)格的核桃和花生各多少袋;
(2)根據(jù)之前的銷售情況,估計今年下半年,該店還能銷售上表規(guī)格的核桃和花生共2000kg,其中,核桃的銷售量不低于600kg.假設(shè)今年下半年,銷售上表規(guī)格的核桃為(kg),銷售上表規(guī)格的核桃和花生獲得的總利潤為(元),寫出與之間的函數(shù)關(guān)系式,并求下半年該店銷售這種規(guī)格的核桃和花生至少獲得的總利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB和AC于點E、F,給出以下五個結(jié)論正確的個數(shù)有( )
①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),S四邊形AEPF=S△ABC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與y軸相交于點A(0,3),與x正半軸相交于點B,對稱軸是直線x=1.
(1)求此拋物線的解析式以及點B的坐標(biāo);
(2)動點M從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向運(yùn)動,同時動點N從點O出發(fā),以每秒3個單位長度的速度沿y軸正方向運(yùn)動,當(dāng)N點到達(dá)A點時,M,N同時停止運(yùn)動.過動點M作x軸的垂線交線段AB于點Q,交拋物線于點P,設(shè)運(yùn)動的時間為t秒,當(dāng)t為何值時,四邊形OMPN為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com